
1IT3030E Fall 2024

Chapter 7: I/O System

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep

[with materials from Computer Organization and Design, MK

and M.J. Irwin’s presentation, PSU 2008]

2IT3030E Fall 2024

Computer Organization

❑ Computer needs the interface to communicate with the
outside world: human, other machines, the physical
environment.

3IT3030E Fall 2024

Review: Major Components of a Computer

❑ Input + Output = I/O system

KVM, Network,...

Drives, USB devices,...

Sensors,...

Controllers,...

Processor

Control

Datapath

Memory

Devices

Input

Output

and thousands of other devices…

4IT3030E Fall 2024

Important metrics

❑ For processor and memory: performance and cost

❑ For I/O system: what are the most important?

Performance

Expandability

Dependability

Cost, size, weight

Security

…

5IT3030E Fall 2024

Input and Output Devices

❑ I/O devices are incredibly diverse with respect to

Behavior – input, output or storage

Partner – human or machine

Data rate – the peak rate at which data can be transferred

between the I/O device and the main memory or processor

Device Behavior Partner Data rate (Mb/s)

Keyboard input human 0.0001

Mouse input human 0.0038

Laser printer output human 3.2000

Magnetic disk storage machine 800.0000-3000.0000

Graphics display output human 800.0000-8000.0000

Network/LAN input or

output

machine 100.0000-

10000.0000

6IT3030E Fall 2024

I/O Performance Measures

❑ I/O bandwidth (throughput) – amount of
information that can be input/output and
communicated across an interconnect
between the processor/memory and I/O
device per unit time

1. How much data can we move through the
system in a certain time?

2. How many I/O operations can we do per unit
time?

latency

throughput

❑ I/O response time (latency) – the total elapsed time to
accomplish an input or output operation

❑ Many applications require both high throughput and
short response times

11IT3030E Fall 2024

System Interconnection

❑ Processor

❑ Memory

❑ I/O devices

❑ How to connect them physically?

17IT3030E Fall 2024

A Typical I/O System

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk

I/O
Controller

I/O
Controller

Graphics Network

Interrupts

Disk

18IT3030E Fall 2024

Intel Xeon 5300 I/O System (2007)

Memory

Controller

Hub

(North Bridge)

5000P

Intel Xeon 5300

processor

Intel Xeon 5300

processor

Main

memory

DIMMs

Front Side Bus

(1333MHz, 10.5GB/sec)FB DDR2 667

(5.3GB/sec)

PCIe 8x (2GB/sec)ESI (2GB/sec)

I/O

Controller

Hub

(South Bridge)

Entreprise

South

Bridge 2

CD/DVD

Disk

Disk Serial ATA

(300MB/sec)

Keyboard,

Mouse, …

LPC

(1MB/sec)

USB ports USB 2.0

(60MB/sec)

PCIe 4x

(1GB/sec)

PCIe 4x

(1GB/sec)

PCI-X bus

(1GB/sec)

PCI-X bus

(1GB/sec)

Parallel ATA

(100MB/sec)

19IT3030E Fall 2024

Intel Core i7 with Z87 chipset (2013)

20IT3030E Fall 2024

Intel Core 13th gen with Z790 chipset (2022)

21IT3030E Fall 2024

Interfacing with I/O Devices

❑ Physical connection is done, now how about data
transfer?

❑ How is a user I/O request transformed into a device
command and communicated to the device?

❑ How is data actually transferred to or from a memory
location?

❑ What is the role of the operating system?

22IT3030E Fall 2024

Communication of I/O Devices and Processor

❑ How the processor directs (find) the I/O devices

Special I/O instructions

- Must specify both the device and the command

Memory-mapped I/O

- I/O devices are mapped to memory addresses

- Read and writes to those memory addresses are interpreted

as commands to the I/O devices

- Load/stores to the I/O address space can only be done by the OS

❑ Memory map

23IT3030E Fall 2024

Example: controlling 7-seg LED in RARS

❑ Tools→Digital Lab Sim: 2x 7-seg LEDs display

Byte value at address 0xFFFF0010 : command right seven
segment display

Byte value at address 0xFFFF0011 : command left seven
segment display

24IT3030E Fall 2024

Example: controlling 7-seg LED in RARS

❑ Tools→Digital Lab Sim: 2x 7-seg LEDs display

Byte value at address 0xFFFF0010 : command right seven
segment display

Byte value at address 0xFFFF0011 : command left seven
segment display

li a0, 0x8 #value
li t0, 0xFFFF0011 #address
sb a0, 0(t0) #turn-on

25IT3030E Fall 2024

Exercise

❑ Write program to display the value 24 to Digital Lab Sim

26IT3030E Fall 2024

Communication of I/O Devices and Processor

❑ How I/O devices communicate with the processor

Polling

Interrupt driven I/O

Direct memory access

❑ Polling – the processor periodically checks the status of

an I/O device to determine its need for service

Processor is totally in control – but does all the work

Can waste a lot of processor time due to speed differences

27IT3030E Fall 2024

Example: polling the memory-mapped keyboard

❑ Terminal:

Input: receiver control (0xffff0000) and data (0xffff0004)

Output: transmitter control (0xffff0008) and data (0xffff000c)

28IT3030E Fall 2024

Example: polling the memory-mapped keyboard

❑ Polling for data, then read when data is available

.eqv KEY_READY 0xFFFF0000

.eqv KEY_CODE 0xFFFF0004

.text

li s0, KEY_CODE

li s1, KEY_READY

WaitForKey:

lw t1, 0(s1) # check data available

beq t1, zero, WaitForKey

ReadKey:

lw t0, 0(s0)

li a7, 11 #print char

mv a0, t0

ecall

j WaitForKey

29IT3030E Fall 2024

Exercise

❑ Write a program to continuously read data from the
terminal, encode the data by shifting it 3 position in the
ASCII table, then write the encoded data to the terminal.

❑ Remember to check for terminal input and output ready
before read/write.

30IT3030E Fall 2024

Example: reading 1 byte from terminal
.eqv KEY_CODE 0xFFFF0004
.eqv KEY_READY 0xFFFF0000
.eqv DISPLAY_CODE 0xFFFF000C
.eqv DISPLAY_READY 0xFFFF0008
.text

li a0, KEY_CODE
li a1, KEY_READY
li s0, DISPLAY_CODE
li s1, DISPLAY_READY

loop:
WaitForKey:

lw t1, 0(a1) # t1 = [a1] = KEY_READY
beq t1, zero, WaitForKey # Polling

ReadKey:
lw t0, 0(a0) # t0 = [a0] = KEY_CODE

WaitForDis:
lw t2, 0(s1) # t2 = [s1] = DISPLAY_READY
beq t2, zero, WaitForDis # Polling

Encrypt:
addi t0, t0, 1 # change input key

ShowKey:
sw t0, 0(s0) # show key
j loop

31IT3030E Fall 2024

Interrupt driven I/O

❑ The I/O device issues an
interrupt to indicate that it needs
attention.

❑ The processor detects and
“serves” the interrupt by
executing a handler (aka.
Interrupt service routine).

32IT3030E Fall 2024

Interrupt Driven I/O

❑ Advantages of using interrupts

Relieves the processor from having to continuously poll for an I/O

event;

User program progress is only suspended during the actual

transfer of I/O data to/from user memory space

❑ Disadvantage – special hardware is needed to

Indicate the I/O device causing the interrupt and to save the

necessary information prior to servicing the interrupt and to

resume normal processing after servicing the interrupt

33IT3030E Fall 2024

RISC-V Interrupt

❑Control and Status Registers (CSRs): indicate
the state of the CPU and allow software to
control the behavior of the CPU.

❑ ustatus (status register)

❑ ucause (interrupt cause)

❑ utvec (trap vector)

❑ uie (interrupt enable)

❑ uip (interrupt pending)

❑ uepc (exception program
counter)

34IT3030E Fall 2024

Interrupt handling

1. Declare the interrupt handling routine (Interrupt
Service Routine - ISR)

2. Load the interrupt handling routine address
into the utvec register.

3. Depending on the program, set the interrupt
source in the uie register.

4. Enable global interrupts, set the uie bit of the
ustatus register.

5. (For RARS simulator) Set up the simulation tool
to enable interrupts (Keypad, Timer Tool, ...)

35IT3030E Fall 2024

Interrupt handling

❑ When an interrupt occurred: RISC-V jumps to interrupt
service routine

❑ Inside ISR
Classify the source of interrupt, depending on the interrupt
source, perform the corresponding processing.

Exit from ISR with instruction uret (exception return). This
basically restores PC with value in EPC.

36IT3030E Fall 2024

Example: detect a keypad button pressed (1/3)
.eqv IN_ADDRESS_HEXA_KEYBOARD 0xFFFF0012
.data

message: .asciz "Someone's presed a button.\n"
MAIN Procedure
.text
main:

Load the interrupt service routine address to the UTVEC register
la t0, handler
csrrs zero, utvec, t0

Set the UEIE (User External Interrupt Enable) bit in UIE register
li t1, 0x100
csrrs zero, uie, t1 # uie - ueie bit (bit 8)

Set the UIE (User Interrupt Enable) bit in USTATUS register
csrrsi zero, ustatus, 0x1 # ustatus - enable uie (bit 0)
Enable the interrupt of keypad of Digital Lab Sim
li t1, IN_ADDRESS_HEXA_KEYBOARD
li t3, 0x80 # bit 7 = 1 to enable interrupt
sb t3, 0(t1)

37IT3030E Fall 2024

Example: detect a keypad button pressed (2/3)

Infinite main loop to demo the effective of interrupt

loop:
nop
Delay 10ms
li a7, 32
li a0, 10
ecall
nop
j loop

end_main:

38IT3030E Fall 2024

Example: detect a keypad button pressed (3/3)

Interrupt service routine
handler:

ebreak # Can pause the execution to observe registers
Saves the context
addi sp, sp, -8
sw a0, 0(sp)
sw a7, 4(sp)

Handles the interrupt: Shows message in Run I/O
li a7, 4
la a0, message
ecall

Restores the context
lw a7, 4(sp)
lw a0, 0(sp)
addi sp, sp, 8

Back to the main procedure
uret

39IT3030E Fall 2024

Direct Memory Access (DMA)

❑ For high-bandwidth devices (like disks) interrupt-driven

I/O would consume a lot of processor cycles

❑ With DMA, the DMA controller has the ability to transfer

large blocks of data directly to/from the memory without

involving the processor

1. The processor initiates the DMA transfer by supplying the I/O

device address, the operation to be performed, the memory

address destination/source, the number of bytes to transfer

2. The DMA controller manages the entire transfer (possibly

thousand of bytes in length), arbitrating for the bus

3. When the DMA transfer is complete, the DMA controller

interrupts the processor to let it know that the transfer is

complete

❑ There may be multiple DMA devices in one system

Processor and DMA controllers contend for bus cycles and for

memory

40IT3030E Fall 2024

Summary

❑ Characteristics of I/O system and devices

❑ I/O performance measures

❑ I/O system organization

❑ Methods for I/O operation and control

Polling

Interrupt

DMA

