
1IT3030E, Fall 2024

Chapter 6: Memory

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep

[with materials from Computer Organization and Design, MK

and M.J. Irwin’s presentation, PSU 2008]



2IT3030E, Fall 2024

Content

❑ Memory hierarchy

❑ Principal of locality

❑ Cache

❑ Virtual memory



3IT3030E, Fall 2024

Memory

❑ Memory: where data are stored.

Why is memory critical to performance?



4IT3030E, Fall 2024

Memory technology

❑ Static RAM (SRAM)

0.5ns – 2.5ns, $500 – $1000 per GB

❑ Dynamic RAM (DRAM)

50ns – 70ns, $10 – $20 per GB

❑ Flash memory

5,000ns – 50,000ns, $0.75 – $1 per GB

❑ Magnetic memory

5,000,000ns – 20,000,000ns, $0.05 – $0.1 per GB

❑ Fact: 

Large memories are slow 

Fast memories are small (and expensive)



5IT3030E, Fall 2024

A Typical Memory Hierarchy

Second

Level

Cache

(SRAM)

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)

D
a

ta

C
a
c
h
e

In
s
tr

C
a
c
h
e

IT
L
B

D
T

L
B

Speed (%cycles): ½’s             1’s                  10’s                  100’s               10,000’s

Size (bytes):    100’s   10K’s                 M’s                    G’s                    T’s

Cost:         highest                                                                               lowest

❑ How to get an ideal memory

❑ As fast as SRAM

❑ As cheap as disk?



6IT3030E, Fall 2024

The Memory Hierarchy: Locality Principal

❑ C program

int x[1000], temp;
for (i = 0; i < 999; i++)

for (j = i+1; j < 1000; j++)
if (x[i] < x[j])
{

temp = x[i];
x[i] = x[j];
x[j] = temp;

}

Data memory at location of 

temp and x are accessed 

multiple times

Instruction memory at 

location of the two for
loops are used repeatedly



7IT3030E, Fall 2024

The Memory Hierarchy: Locality Principal

❑ Temporal Locality (locality in time)

If a memory location is referenced then it will tend to be 

referenced again soon

 Keep most recently accessed data items closer to the processor

❑ Spatial Locality (locality in space)

If a memory location is referenced, the locations with nearby 

addresses will tend to be referenced soon

 Move blocks consisting of contiguous words closer to the 

processor 



8IT3030E, Fall 2024

Hierarchical memory access

❑ Data are stored in multiple levels.

High level: fast but small

Low level: slow but large

❑ Data are transferred in units of 
block (of multiple words) between 
levels, through the hierarchy.

❑ Frequently used data are stored 
closer to processor.



9IT3030E, Fall 2024

Hierarchical memory access

❑ Associative data access:

Processor access data in lower level

Data transfer from lower level to 
processor via upper level(s)

❑ If accessed data is present in 
upper level

Hit: access satisfied by upper level

- Hit ratio: hits/accesses

❑ If accessed data is absent

Miss: block copied from lower level

- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 – hit ratio

Then accessed data supplied from 
upper level



11IT3030E, Fall 2024

Cache 

❑ The memory hierarchy between the processor and main 
memory

CPU fetch instructions and data from cache, if found (cache hit) 
→ fast access (hit time).

If not found (cache miss) → load a block from main memory into 
cache, then access in cache → slower access time (miss penalty)

Hit time << miss penalty

CPU

Cache 

Main 

memoryBlocks of data

Instruction fetch

Memory read/write



12IT3030E, Fall 2024

Cache Basics

❑ CPU needs to access a data item in memory

➔Two questions to answer (in hardware):

Q1:  How does CPU know if the data item is in the cache?

Q2:  If it is, how does CPU find it?

❑ To answer the first question

Adding set of tags fields into cache: each block in cache has a 

tag

The tags contain address information to identify whether a word 

in cache is corresponding to the requested one in memory.

❑ To answer the second question

Depends on how a block in memory is mapped into block (line) 

in cache

- methods for mapping: Direct mapping, Fully associative mapping, 

N-way set associative mapping



13IT3030E, Fall 2024

Cache Basics

❑ CPU needs to access a data item in memory

➔Two questions to answer (in hardware):

Q1:  How does CPU know if the data item is in the cache?

Q2:  If it is, how does CPU find it?

❑ Direct mapped

Each memory block is mapped to exactly one block in the cache

- lots of lower level blocks must share blocks in the cache

Address mapping (to answer Q2):

(block address) modulo (# of blocks in the cache)

The tag field: associated with each cache block that contains 

the address information (the upper portion of the address) 

required to identify the block (to answer Q1)

The valid bit: if there is data in the block or not



14IT3030E, Fall 2024

Caching:  A Simple First Example

00

01

10

11

Cache

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache 

tag to the high order 2 

memory address bits to 

tell if the memory block 

is in the cache

Valid

One-word blocks

Two low order bits 

define the byte in the 

word (32b words)

Q2: How does CPU 

find it?

Use next 2 low order 

memory address bits

– the index – to 

determine which 

cache block (i.e., 

modulo the number of 

blocks in the cache)

(block address) modulo (# of blocks in the cache)

Index



15IT3030E, Fall 2024

Caching:  A Simple First Example

00

01

10

11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order 

memory address bits 

– the index – to 

determine which 

cache block (i.e., 

modulo the number of 

blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache 

tag to the high order 2 

memory address bits to 

tell if the memory block 

is in the cache

Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

One word blocks

Two low order bits 

define the byte in the 

word (32b words)

(block address) modulo (# of blocks in the cache)

Index



16IT3030E, Fall 2024

Direct Mapped Cache

0 1 2 3

4 3 4 15

❑ Consider the main memory word reference string

0   1   2   3   4   3   4   15Start with an empty cache - all 

blocks initially marked as not valid



17IT3030E, Fall 2024

Direct Mapped Cache

0 1 2 3

4 3 4 15

❑ Consider the main memory word reference string

0   1   2   3   4   3   4   15

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01 4

11 15

00    Mem(1)

00    Mem(2)

00    Mem(3)

Start with an empty cache - all 

blocks initially marked as not valid

8 requests, 6 misses

What if we repeatedly request 1,000,000 times



18IT3030E, Fall 2024

Measuring Cache Performance

❑ Components of CPU time

Program execution cycles

- Includes cache hit time

Memory stall cycles

- Mainly from cache misses

❑ With simplifying assumptions:

penalty Miss
nsInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory 

cycles stallMemory 

=

=



19IT3030E, Fall 2024

Cache performance Example

❑ Given a RISC-V CPU running a program with the miss rate of 
instruction cache is 2% and the miss rate of data cache is 4%. The 
processor has CPI of 2 without any memory stalls and the miss penalty 
is 100 cycles for all misses. Assume the frequency of all loads and 
stores is 36%.

❑ Determine how much faster that processor would run with a perfect 
cache that never missed. 



20IT3030E, Fall 2024

Cache Performance Example

❑Given

I-cache miss rate = 2%

D-cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) = 2

Load & stores are 36% of instructions

❑Miss cycles per instruction

I-cache: 0.02 × 100 x 1 = 2     

D-cache: 0.04 × 100 × 0.36 = 1.44

❑Actual CPI = 2 + 2 + 1.44 = 5.44

Ideal CPU is 5.44/2 =2.72 times faster

Tỷ lệ miss với cache dữ liệu 4%

Số chu kì truy cập bộ nhớ 100

Số chu kì/lệnh (hit 100%) 2

Tỷ lệ lệnh truy cập bộ nhớ 36%

Số chu kì đợi lệnh t.bình 2

Số chu kì đợi dữ liệu t.bình 1.44

CPI thực tế có trễ bộ nhớ 5.44



21IT3030E, Fall 2024

Average Access Time

❑ Hit time is also important for performance

❑ Average memory access time (AMAT)

AMAT = Hit time + Miss rate × Miss penalty

❑ Example

CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, 
I-cache miss rate = 5%

AMAT = (1 + 5% × 20)x1 = 2ns

- 2 cycles per instruction



22IT3030E, Fall 2024

Performance Summary

❑ When CPU performance increased

Miss penalty becomes more significant

❑ Decreasing base CPI

Greater proportion of time spent on memory stalls

❑ Increasing clock rate

Memory stalls account for more CPU cycles

❑ Can’t neglect cache behavior when evaluating system 
performance



23IT3030E, Fall 2024

❑ One-word blocks, cache size = 1K words (or 4KB)

Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 

offset

What kind of locality are we taking advantage of?

20

Data

32

Hit



24IT3030E, Fall 2024

❑ One-word blocks, cache size = 1K words (or 4KB)

Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 

offset

Calculate the total size of this cache in Kilobits

20

Data

32

Hit



25IT3030E, Fall 2024

Exercise 

❑ How many total bits are required for a direct-mapped 
cache with 16 KiB of data and 1-word blocks, assuming a 
32-bit address?



26IT3030E, Fall 2024

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0

1

2

.

.

.

253

254

255

31 30   . . .         13 12 11    . . .    4  3 2  1 0
Byte 

offset

20

20Tag

Hit Data

32

Block offset

❑ Four  words/block, cache size = 1K words

What kind of locality are we taking advantage of?



27IT3030E, Fall 2024

Taking Advantage of Spatial Locality 

0

❑ Let cache block hold more than one word

0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

Start with an empty cache - all 

blocks initially marked as not valid



28IT3030E, Fall 2024

Taking Advantage of Spatial Locality 

0

❑ Let cache block hold more than one word

0   1   2   3   4   3   4   15

1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)
01 5 4

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

miss

11 15 14

Start with an empty cache - all 

blocks initially marked as not valid

8 requests, 4 misses



29IT3030E, Fall 2024

Miss Rate vs Block Size vs Cache Size
M

is
s
 r

a
te

 (
%

)

Block size (bytes)

8 KB

16 KB

64 KB

256 KB

❑ Miss rate goes up if the block size becomes a significant 

fraction of the cache size because the number of blocks 

that can be held in the same size cache is smaller 

(increasing capacity misses)



30IT3030E, Fall 2024

Note when increase the block size

❑ Decrease the miss rate, but

❑ Increase the miss penalty (# clock cycles to load data 
from memory into cache)

❑ Leads to capacity miss: the cache cannot store all the 
required blocks due to limited space (increase the block 
size means decrease the number of block inside the 
cache) 



31IT3030E, Fall 2024

Cache Field Sizes

❑ The number of bits in a cache includes both the storage 

for data and for the tags

32-bit byte address

For a direct mapped cache with 2n blocks, n bits are used for the 

index

For a block size of 2m words (2m+2 bytes), m bits are used to 

address the word within the block and 2 bits are used to address 

the byte within the word

❑ What is the size of the tag field? 32 – (n + m + 2)

❑ The total number of bits in a direct-mapped cache is then

2n x (block size + tag field size + valid field size)



32IT3030E, Fall 2024

Exercise 

❑ How many total bits are required for a direct-mapped 
cache with 16 KiB of data and 4-word blocks, assuming a 
32-bit address?



33IT3030E, Fall 2024

Exercise

❑ Consider the Cache of Intrinsity FastMATH processor 
(real computer) as follows. Compute the total bits?



34IT3030E, Fall 2024

Sources of Cache Misses

❑ Compulsory (cold start, first reference):

First access to a block.

We cannot do much on this.

Solution: increase block size (but also increases miss penalty).

❑ Capacity:

Cache cannot contain all blocks accessed by the program

Solution: increase cache size (may increase access time)

❑ Conflict (collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity (may increase access time)



35IT3030E, Fall 2024

Reducing Cache Miss Rates

➔Allow more flexible block placement

❑ Direct mapped cache: a memory block maps to exactly 
one cache block

❑ Fully associative cache allow a memory block to be 
mapped to any cache block 

❑ A compromise is to divide the cache into sets each of 
which consists of n “ways” (n-way set associative).  A 
memory block maps to a unique set (specified by the 
index field) and can be placed in any way of that set (so 
there are n choices)

(block address) modulo (# sets in the cache)



36IT3030E, Fall 2024

More flexible block placement

Data

1

2
Tag

Search

0 1 2 3 4 5 6 7Block#

Data

1

2
Tag

Search

Main memory

Data

1

2
Tag

Search

Set# 0    1    2   3

Direct Mapped Set Associative Fully Associative



37IT3030E, Fall 2024

Spectrum of Associativity

❑ For a cache with 8 entries



38IT3030E, Fall 2024

Another Reference String Mapping

0 4 0 4

0 4 0 4

❑ Consider the main memory word reference string

0   4   0   4   0   4   0   4Start with an empty cache - all 

blocks initially marked as not valid



39IT3030E, Fall 2024

Another Reference String Mapping

0 4 0 4

0 4 0 4

❑ Consider the main memory word reference string

0   4   0   4   0   4   0   4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)

01 4
00    Mem(0)

01
4

01    Mem(4)
000

01    Mem(4)
000

Start with an empty cache - all 

blocks initially marked as not valid

❑ Ping pong effect due to conflict misses - two memory 

locations that map into the same cache block

8 requests, 8 misses



40IT3030E, Fall 2024

Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order 

memory address bit to 

determine which 

cache set (i.e., modulo 

the number of sets in 

the cache)

Tag Data

Q1: Is it there?

Compare all the cache 

tags in the set to the 

high order 3 memory 

address bits to tell if 

the memory block is in 

the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0

1

Way

0

1

One word blocks

Two low order bits 

define the byte in the 

word (32b words)



41IT3030E, Fall 2024

Another Reference String Mapping

0 4 0 4

❑ Consider the main memory word reference string

0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache - all 

blocks initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

❑ Solves the ping pong effect in a direct mapped cache 

due to conflict misses since now two memory locations 

that map into the same cache set can co-exist!

8 requests, 2 misses

Tag Tag Tag Tag



42IT3030E, Fall 2024

Four-Way Set Associative Cache
❑ 28 = 256 sets each with four ways (each with one block)

31 30       . . .         11 10   9     . . .        2  1  0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3



43IT3030E, Fall 2024

Range of Set Associative Caches

❑ For a fixed size cache, increase of the number of blocks 
per set results in decrease of the number of sets

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative

(only one set)

Tag is all the bits except

block and byte offset

Direct mapped

(only one way)

Smaller tags, only a 

single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block



44IT3030E, Fall 2024

Benefits of Set Associative Caches

❑ The choice of direct mapped or set associative depends 
on the cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

Data from Hennessy & 

Patterson, Computer 

Architecture, 2003

❑ Largest gains are in going from direct mapped to 2-way 

(20%+ reduction in miss rate)



45IT3030E, Fall 2024

Excercise

❑ Assuming a cache of 4096 blocks, a four-word block 
size, and a 32-bit address, find the total bits required for 
caches that are direct-mapped, two-way and four-way
set associative, and fully associative.



46IT3030E, Fall 2024

Block replacement

❑ Cache miss: a new block is loaded to cache, it will 
replace an old block

➔Which block should be replaced?

❑ Direct-mapped cache: exactly one choice

❑ Associative cache: one of multiple blocks in the set must 
be selected

➔ LRU scheme: (least recently used) block that has been 
unused the longest time is selected for replacement.

Mechanism for relative last time used tracking is necessary.



47IT3030E, Fall 2024

LRU block replacement

0 4 2 4

❑ Consider the main memory word reference string

0   4   2   4   0   0   0   4

miss miss miss hit

000   Mem(0)

Start with an empty cache - all 

blocks initially marked as not valid

x   010   Mem(4) 010   Mem(4)

x   001   Mem(2) 001   Mem(2)

x   010   Mem(4)

x   000   Mem(0)

0 0 0 4miss hit hit hit

x   000   Mem(0)

010   Mem(4) 010   Mem(4)

x   000   Mem(0) 000   Mem(0)

x   010   Mem(4)

x   000   Mem(0)

010   Mem(4)

Last 

used

Last 

used



48IT3030E, Fall 2024

Reducing The Miss Penalty

➔Use multiple levels of caches

Very costly in 1990s: US$100000 or above

Common in 2020s: ~US$500 machines

❑ Normally a unified L2 cache (holding both instructions 

and data, for each core) and a unified L3 cache shared 

for all cores



49IT3030E, Fall 2024

Multilevel Cache Design Considerations

❑ Design considerations for L1 and L2 caches are very 
different

Primary cache should focus on minimizing hit time in support of 
a shorter clock cycle

- Smaller with smaller block sizes

Secondary cache(s) should focus on reducing miss rate to 
reduce the penalty of long main memory access times

- Larger with larger block sizes

- Higher levels of associativity

❑ The miss penalty of the L1 cache is significantly reduced 
by the presence of an L2 cache – so it can be smaller but 
have a higher miss rate

❑ For the L2 cache, hit time is less important than miss rate

The L2$ hit time determines L1$’s miss penalty

L2$ local miss rate >> than the global miss rate



50IT3030E, Fall 2024

Multilevel Cache Example 

❑ Given a processor with a base CPI of 1.0 and clock rate 
of 4 GHz. Main memory access time is 100 ns.

All data references are hit in primary cache (L1).

Instruction miss rate of 2% in primary cache (L1).

❑ A new L2 is added

Access time from L1 to L2 is 5 ns.

Instruction miss rate (to main memory) reduced to 0.5%.

❑ What is speed-up after adding the L2?



52IT3030E, Fall 2024

Multilevel Cache Example

❑ Given

CPU base CPI = 1, clock rate = 4GHz

Miss rate/instruction = 2%

Main memory access time = 100ns

❑ With just primary cache

Miss penalty = 100ns/0.25ns = 400 cycles

Effective CPI = 1 + 0.02 × 400 = 9

CPU

L1

L2

CPI=1

f=4GHz 

Mem

5ns

2% inst. missed

100ns

0.5% inst. 

missed



53IT3030E, Fall 2024

Multilevel Cache Example (cont.)

❑ Now add L-2 cache

Access time = 5ns

Global miss rate to main memory = 0.5%

❑ Primary miss with L-2 hit (Miss L1, hit L2)

Penalty = 5ns/0.25ns = 20 cycles

❑ Primary miss with L-2 miss (Miss L1 & L2)

Extra penalty = 400 cycles

❑ CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

❑ Performance ratio = 9/3.4 = 2.6



57IT3030E, Fall 2024

❑ Read hits (I$ and D$)

this is what we want!

❑ Write hits (D$ only)

require the cache and memory to be consistent

- always write the data into both the cache block and the next level in 

the memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy – so 

slow! – or can use a write buffer and stall only if the write buffer is full

allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache block to 

the next level in the memory hierarchy when that cache block is 

“evicted” - replaced)

- need a dirty bit for each data cache block to tell if it needs to be 

written back to memory when it is evicted – can use a write buffer to 

help “buffer” write-backs of dirty blocks

Handling Cache Hits



58IT3030E, Fall 2024

Write-Through

❑ On data-write hit, could just update the 
block in cache

But then cache and memory would be 
inconsistent

❑ Write through: also update memory

❑ But makes writes take longer

e.g., if base CPI = 1, 10% of instructions 
are stores, write to memory takes 100
cycles

- Effective CPI = 1 + 10% × 100 = 11

❑ Solution: write buffer

Holds data waiting to be written to memory

CPU continues immediately

- Only stalls on write if write buffer is already 
full

CacheCPU

Mem

CacheCPU

Mem

fast

slow

Buffer



59IT3030E, Fall 2024

Write-Back

❑ Alternative: On data-write hit, just 
update the block in cache

Keep track of whether each block is 
dirty

❑ When a dirty block is replaced

Write it back to memory

Can use a write buffer to allow 
replacing block to be read first

CacheCPU

Mem

block … in 

mem is dirty 

CacheCPU

Mem

Buffer

hit

hit



62IT3030E, Fall 2024

Exercise

❑ Given a CPU with 32 bits address and the below word 
reference string.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

❑ Identify the binary address, tag field, block index field, 
and hit ratio in the following cases. 

The CPU has direct-mapped cache of 16 one-word blocks. 

The CPU has direct-mapped cache of 8 two-word blocks.



63IT3030E, Fall 2024

Exercise

❑ Given a CPU with 32 bits address and the below byte 
reference string.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

❑ The CPU has direct-mapped cache with a total of 8 data 
words. Miss penalty is 25 cycles.

❑ Which of the following designs is optimal given the above 
reference string? 

8x one-word blocks, access time of 2 cycles

4x two-word blocks, access time of 3 cycles.

2x four-word blocks, access time of 5 cycles.



64IT3030E, Fall 2024

Virtual Memory

❑Main memory (RAM) can be used as a “cache” 
for secondary storage (disk), but not mainly for 
performance.

Main memory Secondary memory

words blocks pages

CacheCPU

Virtual memory
(very large main memory)

Purpose: Improving

performance
Purpose???



65IT3030E, Fall 2024

Virtual Memory

❑ Multiple programs (processes) share one main memory, 
with protection

❑ Large programs can run on computer with small main 
memory

Main memory

code

data

code

data

code

data

…

RAM

Virtual memory

(4 GB address space)

Disk
(page file or

swap

space)

Physical memory

(ex. 1 GB RAM)

Chris Terman MIT 6.004



66IT3030E, Fall 2024

Relocation and Address translation

❑Programs are located and run in virtual memory.
Each program has its own continuous address space (virtual 
address).

Virtual address are mapped to physical address via translation.

Memory is organized in pages of fixed size (4KB - 64KB).

Example: CPU with 32-bit address, but the 

computer has only 1GB of physical 

memory

Do programs need to be allocated in 

contiguous physical pages?



67IT3030E, Fall 2024

Address Translation

❑ CPU accesses a memory location based on virtual 
address: Virtual page number + Page offset

❑ If the virtual page number can be translated to physical 
page number (hit) → memory access can be done 
properly.

❑ Otherwise (miss): page fault → very expensive operation

New physical page is allocated for the running process

- If no free physical pages is available, move an “old” page to disk to 
make space for the new page ➔ page replacement

Content for the new page is loaded from disk



68IT3030E, Fall 2024

Page Tables

❑ Stores placement information of each program (process)

Array of Page Table Entries, indexed by virtual page number

Located in main memory

Page table register in CPU points to page table in physical 
memory

❑ If page is present in memory

PTE stores the physical page number

Plus status bits (referenced, dirty, …)

❑ If page is not present

PTE can refer to location in swap space on disk

❑ Question: how does CPU know where the Page table is?



69IT3030E, Fall 2024

Translation Using a Page Table



70IT3030E, Fall 2024

Page Fault Penalty and Storage Mapping

❑ On page fault, the page must be fetched from disk

Usually together with page replacement

Takes millions of clock cycles

Handled by OS code

Memory pages can be stored 

in disk page-file or swap space

Managed by OS



71IT3030E, Fall 2024

Issues in virtual memory design

❑ Minimize cost for page fault and data write: minimize 
page fault rate, and minimize disk write frequency

Fully associative placement

Smart replacement algorithms

Write back approach

❑ Fast address translation: this happens for every memory 
access, it must be as fast as possible

Caching the page table: Translation Look-aside Buffer (TLB)



72IT3030E, Fall 2024

Page Replacement and Writes

❑ Least-recently used (LRU) for page replacement

Can be quite slow when number of page is large

Reference bit (aka use bit) in PTE set to 1 on access to page

Periodically cleared to 0 by OS

Pages with reference bit = 0 are considered for replacement

❑ Disk writes take millions of cycles

Disk write is slow and should be done in batches of data.

→Write through is impractical

Use write-back

Dirty bit in PTE set when page is written



73IT3030E, Fall 2024

Fast Translation Using TLB

❑ Address translation: two consecutive memory references

One to access the PTE, then the actual memory access

Has good locality → page table can be cached

❑ TLB (Translation Look-aside Buffer)

New component inside CPU

Provides fast access to the most recent PTEs

Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for 
miss, 0.01%–1% miss rate

Only contains PTEs corresponding to physical pages



74IT3030E, Fall 2024

Fast Translation Using a TLB



75IT3030E, Fall 2024

TLB Miss Handler

❑ TLB miss indicates

Page present, but PTE not in TLB

Page not present

❑ Page present: 

Handler copies PTE from memory to TLB

Then restarts instruction

❑ If page not present: page fault will occur



76IT3030E, Fall 2024

Page Fault Handler

❑ Use faulting virtual address to find PTE (currently not 
valid)

❑ Locate page on disk

❑ Choose a page in physical memory to replace

If dirty, write-back the chosen page to disk first

❑ Read page into memory and update page table

❑ Make process runnable again

Restart from faulting instruction



77IT3030E, Fall 2024

TLB and Cache Interaction

❑ Physically addressed cache

Cache uses physical address

Need to translate before 
cache lookup

Slow performance

❑ Virtually addressed cache

Skip TLB when in normal 
cache access

Aliasing problem:

- Different virtual addresses for 
shared physical address

❑ Compromise: virtually indexed 
but physically tagged

No alias, but complicated 
design

1

2

3

Virtual Memory

Physical Memory

physical

or virtual?



78IT3030E, Fall 2024

Process and Memory protection

❑ Process: an instance of a program in 
execution 

❑ (Take the IT3070E - OS course for more details)

❑ With separate memory space (virtual)

❑ Share the common physical memory

❑ Important data of a process: PC, register’s 
values, page table

❑ Memory must be protected

Read protection: processes not able to read 
each other’s memory

Write protection: processes prohibited from 
writing to other process’s memory

❑ Super process: the OS



79IT3030E, Fall 2024

Memory Protection

❑ Read protection

Virtual pages of separate processes map to disjoint physical pages.

Placing page tables in protected address space of OS →
processes are not allowed to modify page tables.

❑ Sharing data

OS creates a page table entry for a virtual page of one process to 
point to physical page of another page.

Write protection: use the write protection bit.

❑ Hardware support for protection (used by OS)

Special privileged supervisor mode (aka kernel mode) and 
privileged instructions.

Page tables and other state information only accessible in 
supervisor mode.

System call exception (e.g., ecall in RISC-V) to go from user mode 
to supervisor mode.



80IT3030E, Fall 2024

Summary 

❑ Memory hierarchy and the locality principal

❑ Cache design

Direct mapped

Set associative

Memory access when cache hit and miss 

❑ Virtual memory

Address translation

TLB

Protection


