Chapter 6. Memory

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep

[with materials from Computer Organization and Design, MK
and M.J. Irwin’s presentation, PSU 2008]

IT3030E, Fall 2024

Content

0 Memory hierarchy
a Principal of locality
a Cache

2 Virtual memory

IT3030E, Fall 2024

Memory

0 Memory: where data are stored.

Why is memory critical to performance?

IT3030E, Fall 2024 3

Memory technology

0 Static RAM (SRAM)
o 0.5ns — 2.5ns, $500 — $1000 per GB

0 Dynamic RAM (DRAM)
0 50ns — 70ns, $10 — $20 per GB

0 Flash memory
o 5,000ns — 50,000ns, $0.75 — $1 per GB

0 Magnetic memory
o 5,000,000ns — 20,000,000ns, $0.05 — $0.1 per GB

0 Fact:
o Large memories are slow
o Fast memories are small (and expensive)

IT3030E, Fall 2024

A Typical Memory Hierarchy

-

6n_éh|p éomponents lllllllllllllllllllll E . . -t -
Control .-
e=H | Second | Secondary
- "B Level Main Memory
Datapath(@ Cache : Memory (Disk)
oll B (sramy| i | (DRAM)
—_ [.
all | JEf_ | :
Speed (%cycles): ¥2’s 1's 10’s 100’s 10,000’s
Size (bytes): 100’s 10K’s M’s G’s T’s
Cost: highest lowest

0 How to get an ideal memory
0 As fast as SRAM
0 As cheap as disk?

IT3030E, Fall 2024

The Memory Hierarchy: Locality Principal

a C program

int x[1000], temp;
for (1 = 0; 1 < 999; i++)

for (j = i+1; j < 1000; j++)

if (x[i] < x[]])

Data memory at location of
temp and x are accessed
multiple times

{ fomp = x[i]- Instruction memory at
x[i? - a1 location of the two for
= XLJ15 loops are used repeatedly

x[j] = temp;

IT3030E, Fall 2024

The Memory Hierarchy: Locality Principal

0 Temporal Locality (locality in time)

o If a memory location is referenced then it will tend to be
referenced again soon

= Keep most recently accessed data items closer to the processor

a Spatial Locality (locality in space)

o If a memory location is referenced, the locations with nearby
addresses will tend to be referenced soon

= Move blocks consisting of contiguous words closer to the
processor

IT3030E, Fall 2024

Hierarchical memory access

0 Data are stored in multiple levels.
o High level: fast but small
o Low level: slow but large

Processor

A

' 0 Data are transferred in units of
block (of multiple words) between
levels, through the hierarchy.

A

Data is transferred
' 0 Frequently used data are stored

closer to Processor.

IT3030E, Fall 2024

Hierarchical memory access

O Assoclative data access:
0 Processor access data in lower level

Processor
. 0 Data transfer from lower level to
processor via upper level(s)
Y
= 0 If accessed data is present in
upper level
4
Data is transferred o Hit: access satisfied by upper level

' - Hit ratio: hits/accesses

Q If accessed data i1s absent

= o Miss: block copied from lower level
- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 — hit ratio

o Then accessed data supplied from
upper level

IT3030E, Fall 2024

Cache

0 The memory hierarchy between the processor and main

memory

o CPU fetch instructions and data from cache, if found (cache hit)
—> fast access (hit time).

o If not found (cache miss) - load a block from main memory into
cache, then access in cache - slower access time (miss penalty)

0 Hit time << miss penalty

CPU

Cache

Blocks of data

IT3030E, Fall 2024

Instruction fetch
Memory read/write

Main
memory

11

Cache Basics

0 CPU needs to access a data item in memory

=>» Two questions to answer (in hardware):

o Q1: How does CPU know if the data item is in the cache?
o Q2: Ifitis, how does CPU find it?

0 To answer the first guestion

o Adding set of tags fields into cache: each block in cache has a
tag

o The tags contain address information to identify whether a word
In cache is corresponding to the requested one in memory.

0 To answer the second guestion

o Depends on how a block in memory is mapped into block (line)
in cache

- methods for mapping: Direct mapping, Fully associative mapping,
N-way set associative mapping

IT3030E, Fall 2024 12

Cache Basics

0 CPU needs to access a data item in memory

=>» Two questions to answer (in hardware):

o Q1: How does CPU know if the data item is in the cache?
o Q2: Ifitis, how does CPU find it?

2 Direct mapped
o Each memory block is mapped to exactly one block in the cache
lots of lower level blocks must share blocks in the cache
o Address mapping (to answer Q2):
(block address) modulo (# of blocks in the cache)

o The tag field: associated with each cache block that contains
the address information (the upper portion of the address)
required to identify the block (to answer Q1)

o The valid bit; if there is data in the block or not

IT3030E, Fall 2024

13

Caching: A Simple First Example

Main Memory

Cache

Index Valid Tag

00

01

10

11

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits to
tell if the memory block
IS In the cache

IT3030E, Fall 2024

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx

1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One-word blocks
Two low order bits
define the byte in the
word (32b words)

Q2: How does CPU
find it?

Use next 2 low order
memory address bits
— the index —to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

(block address) modulo (# of blocks in the cache) s

Caching: A Simple First Example
L 0000XX
Cache EEH0001xx
eSS [00]L.Oxx
IndexValid Tag Data /Jéféféféféféféféféféféfézéoollxx
00 RS RSRR s >0 100XX
01 i C0101xx
0| (1 @ B [01] Oxx
11 s Ereas 011X
T 000xK
SRR 001XXK
.’L_D.|LOxx

Q1: Is it there?

Compare the cache
tag to the high order 2
memory address bits to
tell if the memory block
IS In the cache

IT3030E, Fall 2024

1011xx

1100xx

1101xx

111 0xx

1111xx

Main Memory

One word blocks
Two low order bits
define the byte in the
word (32b words)

Q2: How do we find it?

Use next 2 low order
memory address bits
— the index —to
determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

(block address) modulo (# of blocks in the cache)

15

Direct Mapped Cache

0 Consider the main memory word reference string

Start with an empty cache - all 0O 1 2 3 4 3 4 15
blocks initially marked as not valid

0 1 2 3

IT3030E, Fall 2024

16

Direct Mapped Cache
0 Consider the main memory word reference string

Start with an empty cache - all 0O 1 2 3 4 3 4 15
blocks initially marked as not valid

0 miss 1 miss 2 miss 3 miss
00 | Mem(0) 00 |[Mem(0) 00 | Mem(0) 00 | Mem(0)
00 |Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2)
00 | Mem(3)
4 MISS 3 hit 4 hit 15 miss

0] 4
9. | Mem{e). 01 | Mem(4) 01 | Mem(4) 01 | Mem(4)
00 | Mem(1) 00 | Mem(1) 00 | Mem(1) 00 | Mem(1)
00 | Mem(2) 00 | Mem(2) 00 | Mem(2) 00 | Mem(2)
00 | Mem(3) 00 | Mem(3) 00 | Mem(3)| 11080 | Mem{g)_

15
0 8 requests, 6 misses
o What if we repeatedly request 1,000,000 times

IT3030E, Fall 2024 17

Measuring Cache Performance

2 Components of CPU time

o Program execution cycles
- Includes cache hit time

o Memory stall cycles
- Mainly from cache misses

2 With simplifying assumptions:

Memory stall cycles
_ Memory accesses
- Program
_Instructions ~ Misses

X : x Miss penalty
Program Instructions

x Miss rate x Miss penalty

IT3030E, Fall 2024

18

Cache performance Example

0 Given a RISC-V CPU running a program with the miss rate of
Instruction cache is 2% and the miss rate of data cache is 4%. The
processor has CPI of 2 without any memory stalls and the miss penalty
Is 100 cycles for all misses. Assume the frequency of all loads and
stores is 36%.

0 Determine how much faster that processor would run with a perfect
cache that never missed.

IT3030E, Fall 2024

19

Cache Performance Example

o Given g
— — NS,
. Ty |é miss v&i cache dit liéu 4% -
0 |I-cache miss rate = 2% SScha Kty capbonhe. | 100
. S6 chu ki/Iénh (hit 100%) 2
0 D-cache miss rate = 4% Iy lénh iy cdpbOnhe 30%
SO chu ki dg'i Iénh t.binh 2
. _ S6 chu ki do'i di¥ liéu t.binh 1.44
0 Miss penalty = 100 cycles CPithyctE o w bonhe 548

o0 Base CPI (ideal cache) = 2
0 Load & stores are 36% of instructions

a Miss cycles per instruction
0 l-cache: 0.02 x 100 x 1 =2
0 D-cache: 0.04 x 100 x 0.36 = 1.44

QActualCPI=2+2+1.44 =544
0 ldeal CPU iIs 5.44/2 =2.72 times faster

IT3030E, Fall 2024

20

Average Access Time

0 Hit time is also important for performance

0 Average memory access time (AMAT)
o AMAT = Hit time + Miss rate x Miss penalty

0 Example

o CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles,
|-cache miss rate = 5%

o AMAT = (1 + 5% x 20)x1 = 2ns
- 2 cycles per instruction

IT3030E, Fall 2024

21

Performance Summary

2 When CPU performance increased
o Miss penalty becomes more significant

0 Decreasing base CPI
o Greater proportion of time spent on memory stalls

0 Increasing clock rate
o Memory stalls account for more CPU cycles

0 Can’t neglect cache behavior when evaluating system
performance

IT3030E, Fall 2024

22

Direct Mapped Cache Example
0 One-word blocks, cache size = 1K words (or 4KB)

Byte
3130 1312 11 ... 210
offset
/

Hit Tag ~20 0 Data
t Index 4

Index Valid Tag Data

120 \l:32

What kind of locality are we taking advantage of?

IT3030E, Fall 2024 23

Direct Mapped Cache Example

0 One-word blocks, cache size = 1K words (or 4KB)

Byte
3130 1312 11 ... 210
K//oﬁset
Hit Tag ~20 0 Data
t Index 4
Index Valid Tag Data
0
1
2
. . :
1021
1022
1023
20 \l:32

Calculate the total size of this cache in Kilobits

IT3030E, Fall 2024

24

Exercise

0 How many total bits are required for a direct-mapped
cache with 16 KiB of data and 1-word blocks, assuming a
32-bit address?

IT3030E, Fall 2024

25

Multiword Block Direct Mapped Cache

0 Four words/block, cache size = 1K words

Hit

A

0
1
2

Data

253
254
255

[
»

3130 ... 131211 ... 43210 Byte
—+ offset
Tag 20 g Block offset
Index
IndexValid Tag < Data >
T—20
L .
' 732

What kind of locality are we taking advantage of?

IT3030E, Fall 2024

26

Taking Advantage of Spatial Locality

QO Let cache block hold more than one word

Start with an empty cache - all 0O 1 2 3 4 3 4 15
blocks initially marked as not valid

0 1 2

IT3030E, Fall 2024

27

Taking Advantage of Spatial Locality

QO Let cache block hold more than one word

Start with an empty cache - all 0O 1 2 3 4 3 4 15
blocks initially marked as not valid

0 miss 1 hit 2 MISS

00 |[Mem(1) [Mem(0Q) 00 [Mem(1) [Mem(0Q) 00 [Mem(1) [Mem(0Q)
00 [Mem(3) [Mem(2)

3 hit 4 miss 3hit

00 |Mem(1) | Mem(0) 08 MerM Mem 01 |Mem(5) | Mem(4)
00 [Mem(3) | Mem(2) 00 [Mem(3) | Mem(2) 00 [Mem(3) | Mem(2)

4 hit 15 miss
01 |Mem(5) | Mem(4) 1101 Mem(5) | Mem(4)14
K D
00 |Mem(3) | Mem(2) 08, | Mem Mem

0 8 requests, 4 misses

IT3030E, Fall 2024 28

Miss Rate vs Block Size vs Cache Size

_ 8 KB
S 16 KB
(<))

5 64 KB
n -+256 KB
0

S

Block size (bytes)

0 Miss rate goes up if the block size becomes a significant
fraction of the cache size because the number of blocks
that can be held in the same size cache is smaller
(increasing capacity misses)

IT3030E, Fall 2024

29

Note when increase the block size

0 Decrease the miss rate, but

0 Increase the miss penalty (# clock cycles to load data
from memory into cache)

0 Leads to capacity miss: the cache cannot store all the
required blocks due to limited space (increase the block
size means decrease the number of block inside the

cache)

IT3030E, Fall 2024

30

Cache Field Sizes

0 The number of bits in a cache includes both the storage
for data and for the tags
o 32-bit byte address

o For a direct mapped cache with 2" blocks, n bits are used for the
iIndex

0 For a block size of 2™ words (2™*2 bytes), m bits are used to
address the word within the block and 2 bits are used to address
the byte within the word

0 What is the size of the tag field? 32 — (n + m + 2)

0 The total number of bits in a direct-mapped cache is then
2" x (block size + tag field size + valid field size)

IT3030E, Fall 2024

31

Exercise

0 How many total bits are required for a direct-mapped
cache with 16 KiB of data and 4-word blocks, assuming a
32-bit address?

IT3030E, Fall 2024

32

Exercise

0 Consider the Cache of Intrinsity FastMATH processor
(real computer) as follows. Compute the total bits?

Hit

IT30:

Address (showing bit positions)

Mux

S

31 e 1413 --65---210
418 48 44 Byte
Tag offset
Index Block offset
18 bits 512 bits
V Tag Data
I
256
™ . . y entries
3
J18 432 432 4.32
Ne | l ,

32

Data

33

Sources of Cache Misses

0 Compulsory (cold start, first reference):
o First access to a block.
o We cannot do much on this.
o Solution: increase block size (but also increases miss penalty).

Q Capacity:
o Cache cannot contain all blocks accessed by the program
0 Solution: increase cache size (may increase access time)

0 Conflict (collision):

o Multiple memory locations mapped to the same cache location
o Solution 1: increase cache size
0 Solution 2: increase associativity (may increase access time)

IT3030E, Fall 2024 34

Reducing Cache Miss Rates

=> Allow more flexible block placement

0 Direct mapped cache: a memory block maps to exactly
one cache block

0 Fully associative cache allow a memory block to be
mapped to any cache block

O A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unigue set (specified by the
iIndex field) and can be placed in any way of that set (so
there are n choices)

(block address) modulo (# sets in the cache)

IT3030E, Fall 2024

35

More flexible block placement

Main memory

Block# 0123

Data

Tag

1

Search

Direct Mapped

IT3030E, Fall 2024

!

Tag

1
2

Search T

Set Associative

T

Tag

searcn [TTTTT1T

Fully Associative

1
2

36

Spectrum of Associativity

QO For a cache with 8 entries

IT3030E, Fall 2024

One-way set associative
(direct mapped)
Block Tag Data

0

Two-way set associative

Set Tag Data Tag Data

0
1
2
3

-l O O & W K =

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

37

Another Reference String Mapping
0 Consider the main memory word reference string

Start with an empty cache - all O 4 0 4 0 4 0 4
blocks initially marked as not valid

0 4 0 4

IT3030E, Fall 2024

38

Another Reference String Mapping
0 Consider the main memory word reference string

Start with an empty cache - all O 4 0 4 0 4 0 4
blocks initially marked as not valid

0 Miss 4 MIss 0 Miss 4 MIss
04 4 a
00 | Mem(@]| [ve [Mem® | |ot[Memtn| oo |Mem®)4

0 miss o1 4 miss . 00 0 miss, o1 4 miss

[Mem(Xk)01 06| Mem(8) D% | Mem®®) 08 Mem(’GQ4

0 8 requests, 8 misses

0 Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

IT3030E, Fall 2024 39

Set Associative Cache Example

SEEEEEEEEEEE d Maln Memory
- —12207% one word blocks
ache s ** Two low order bits
Way Set V Tag Data - JOIOXX " gefine the byte in the
| oo 1001IXX S \word (32b words)
0 0 Oj_dex
1 nnl0101XX
0 010X
1 T
e s 1001XX
Ql:Is it there? ~ [rodoxx Usenextllow order
memaory address bit to
......................... 1011xx | _
Compare all the cache o idoxx determine which
tags inthe set 10 the ~lion cache set(ie., modulo
high order 3 memory EEeeronnaes the number of sets in
. o N\ sy 111Pxx
address bits to tell if T the cache)
.. s 111X
the memory block is in
the cache

IT3030E, Fall 2024 40

Another Reference String Mapping
0 Consider the main memory word reference string

Start with an empty cache - all O 4 0 4 0 4 0 4
blocks initially marked as not valid

Tag 0O Miss Tag 4 Miss Tag 0 hit Tag 4 hit
000 Mem(0) 000| Mem(0) 000| Mem(0) 000| Mem(0)
010 Mem(4) 010| Mem(4) 010 Mem(4)

0 8 requests, 2 misses

0 Solves the ping pong effect in a direct mapped cache
due to conflict misses since now two memory locations
that map into the same cache set can co-exist!

IT3030E, Fall 2024

Four-Way Set Associative Cache

0 28 = 256 sets each with four ways (each with one block)

3130 11109 ... 210 s Byte offset
I
Tag 22 s
Index
ndex V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 AL N 1 W | 1 Ak, D 1 Ak
2 \'A'/ y U 2 \'A'/ y L 2 \'A'4 y A 2 VA y [®)
S ? [' ? [' ? [' ? 1
253 253 253 253
254 254 254 254
255 255 255 255
> —) :f,=\' > —) =
| I | .32
|
—4x1 ielect /
Hit Data

IT3030E, Fall 2024

42

Range of Set Associative Caches

0 For a fixed size cache, increase of the number of blocks
per set results in decrease of the number of sets

Used for tag compare Selects the set Selects the word in the block
ng Index Block offset Byte |offset

— > Increasing associativity

Decreasing associativity «—

) Fully associative

Direct mapped },7 | (only one set)
(only one way) Tag is all the bits except

Smaller tags, only a block and byte offset
single comparator

IT3030E, Fall 2024 43

Benefits of Set Associative Caches

0 The choice of direct mapped or set associative depends

on the cost of a miss versus the cost of implementation

12
4KB
10 - 8KB
- 16KB
% 8 - -o- 32KB
S . —— 64KB
7))
& — 128KB
> 4 - .<LP 4* 3 256KB
— |-+-512KB
2 _
; — — — o o Data from Hennessy &
| | ' Patterson, Computer

1-way 2-way 4-way 8-way Architecture, 2003

Associativity

0 Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

IT3030E, Fall 2024

44

Excercise

0 Assuming a cache of 4096 blocks, a four-word block
size, and a 32-bit address, find the total bits required for
caches that are direct-mapped, two-way and four-way
set associative, and fully associative.

IT3030E, Fall 2024

45

Block replacement

0 Cache miss: a new block is loaded to cache, it will
replace an old block

=> Which block should be replaced?
0 Direct-mapped cache: exactly one choice

0 Associative cache: one of multiple blocks in the set must
be selected

o =» LRU scheme: (least recently used) block that has been
unused the longest time is selected for replacement.

o Mechanism for relative last time used tracking is necessary.

IT3030E, Fall 2024 46

LRU block replacement

0 Consider the main memory word reference string

Start with an empty cache - all

042 4000 4

blocks initially marked as not valid

Last

used 0 Mmiss 4 MISS 2 MISS 4 hit
x 1000 | Mem(0) 000 | Mem(0) 001| Mem(2) 001 | Mem(2)
010| Mem(4) 010| Mem(4) X |1010| Mem(4)
Last
used 0 Mmiss 0 hit 0 hit 4 hit
x | 000 | Mem(0) 000| Mem(0) 000| Mem(0) 000| Mem(0)
010| Mem(4) 010| Mem(4) 010| Mem(4)| |x|010| Mem(4)

IT3030E, Fall 2024

Reducing The Miss Penalty

> Use multiple levels of caches
0 Very costly in 1990s: US$100000 or above
o Common in 2020s: ~US$500 machines

0 Normally a unified L2 cache (holding both instructions
and data, for each core) and a unified L3 cache shared
for all cores

IT3030E, Fall 2024

48

Multilevel Cache Design Considerations

0 Design considerations for L1 and L2 caches are very
different

o Primary cache should focus on minimizing hit time in support of
a shorter clock cycle

- Smaller with smaller block sizes

o Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times

- Larger with larger block sizes
- Higher levels of associativity

0 The miss penalty of the L1 cache is significantly reduced
by the presence of an L2 cache — so it can be smaller but
have a higher miss rate

0 For the L2 cache, hit time is less important than miss rate
0 The L2% hit time determines L1$’s miss penalty
o L2$% local miss rate >> than the global miss rate

IT3030E, Fall 2024 49

Multilevel Cache Example

0O Given a processor with a base CPI of 1.0 and clock rate
of 4 GHz. Main memory access time is 100 ns.

o All data references are hit in primary cache (L1).
0 Instruction miss rate of 2% in primary cache (L1).

0 A new L2 is added

o Accesstime fromL1toL2is 5 ns.
o Instruction miss rate (to main memory) reduced to 0.5%.

0 What is speed-up after adding the L27

IT3030E, Fall 2024 50

Multilevel Cache Example

0 Given
o CPU base CPI =1, clock rate = 4GHz
o Miss rate/instruction = 2%
o Main memory access time = 100ns

0 With just primary cache

0 Miss penalty = 100ns/0.25ns = 400 cycles
o Effective CPI=1+0.02x400=9

Mem
CPU L2
L1
CPI=1 5ns 100ns
f=4GHz 2% inst. missed 0.5% inst.

missed
IT3030E, Fall 2024

Multilevel Cache Example (cont.)

2 Now add L-2 cache
0 Access time = 5ns
0 Global miss rate to main memory =

QO Primary miss with L-2 hit (Miss L1, hit L2)
o Penalty = 5ns/0.25ns = 20 cycles

a Primary miss with L-2 miss (Miss L1 & L2)
o Extra penalty = 400 cycles

OCPI=1+0.02x 20+ x 400 = 3.4

0 Performance ratio = 9/3.4 = 2.6

IT3030E, Fall 2024

53

Handling Cache Hits
0 Read hits (1$ and D$)

o this is what we want!

2 Write hits (D$ only)

0 require the cache and memory to be consistent

- always write the data into both the cache block and the next level in
the memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy — so
slow! — or can use a write buffer and stall only if the write buffer is full

o allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache block to
the next level in the memory hierarchy when that cache block is
“evicted” - replaced)

- need a dirty bit for each data cache block to tell if it needs to be
written back to memory when it is evicted — can use a write buffer to
help “buffer” write-backs of dirty blocks

IT3030E, Fall 2024

57

Write-Through

0 On data-write hit, could just update the ~
block in cache ig\;h

o But then cache and memory would be | %
SIoOwW

Inconsistent

Mem

a Write through: also update memory 1)

0 But makes writes take longer

0 e.g., if base CPI =1, 10% of instructions
are stores, write to memory takes 100

cycles)
- Effective CPI =1+ 10% x 100 = 11 ﬁm

. . Buffer L]
a Solution: write buffer
0 Holds data waiting to be written to memory %
o CPU continues immediately _ Mem 1)

- Only stalls on write if write buffer is already

full
IT3030E, Fall 2024 58

Write-Back

2 Alternative: On data-write hit, just
update the block in cache

0 Keep track of whether each block is
dirty

2 When a dirty block is replaced
o Write it back to memory

o Can use a write buffer to allow
replacing block to be read first

IT3030E, Fall 2024

hit\

oCache

block ... in
mem is dirty

Mem

J

L

hit

Cache
Buffer

7

Mem

J

59

Exercise

0 Given a CPU with 32 bits address and the below word
reference string.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

0 Identify the binary address, tag field, block index field,
and hit ratio in the following cases.

o The CPU has direct-mapped cache of 16 one-word blocks.
o The CPU has direct-mapped cache of 8 two-word blocks.

IT3030E, Fall 2024

62

Exercise

0 Given a CPU with 32 bits address and the below byte
reference string.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

0 The CPU has direct-mapped cache with a total of 8 data
words. Miss penalty is 25 cycles.

0 Which of the following designs is optimal given the above
reference string?

o 8x one-word blocks, access time of 2 cycles
o 4x two-word blocks, access time of 3 cycles.
o 2x four-word blocks, access time of 5 cycles.

IT3030E, Fall 2024 63

Virtual Memory

2 Main memory (RAM) can be used as a “cache’
for secondary storage (disk), but not mainly for
performance. e

. Virtual memory
. (very large main memory)

& » <& 1 » <& »
< » € » < >

words blocks ! pages

CPU Cache . Main memory Secondary memory

__

Purpose: Improving

Purpose???
performance P

IT3030E, Fall 2024 64

Virtual Memory

0 Multiple programs (processes) share one main memory,
with protection

0 Large programs can run on computer with small main

RAM
. Disk
Chris Terman MIT 6.004 Main memory (page file or
swap
code || code code space)
data || data data
Physical memory Virtual memory
(ex. 1 GB RAM) (4 GB address space)

IT3030E, Fall 2024 65

Relocation and Address translation

0 Programs are located and run in virtual memory.
o Each program has its own continuous address space (virtual

address).

0 Virtual address are mapped to physical address via translation.
o Memory is organized in pages of fixed size (4KB - 64KB).

Virtual addresses Physical addresses

—

W g

Do programs need to be allocated in
contiguous physical pages?

IT3030E, Fall 2024

Disk addresses

Virtual address

313029 2827 +erveesrersrresrarns 1514 131211 1098 +oeeverens 3210

’ Virtual page number ‘ Page offset

028 O wiwerisssionsrisrssisn 1514131211 1098 cerpernies 3210

’ Physical page number ‘ Page offset

Physical address

Example: CPU with 32-bit address, but the
computer has only 1GB of physical
memory

Address Translation

0 CPU accesses a memory location based on virtual
address: Virtual page number + Page offset

a If the virtual page number can be translated to physical
page number (hit) = memory access can be done

properly.

0 Otherwise (miss): page fault - very expensive operation

o New physical page is allocated for the running process

- If no free physical pages is available, move an “old” page to disk to
make space for the new page = page replacement

o Content for the new page is loaded from disk

CPU chip Main memory

Virtual Address | Physical
address transiation | address

(VA) po— (PA)
1 S Lo, S

CcPU

NOOARWN=O

Data word

IT3030E, Fall 2024 67

Page Tables

0 Stores placement information of each program (process)
0 Array of Page Table Entries, indexed by virtual page number
o Located in main memory

0 Page table register in CPU points to page table in physical
memory

Q If page Is present in memory
o PTE stores the physical page number
o Plus status bits (referenced, dirty, ...)

a If page iIs not present
o PTE can refer to location in swap space on disk

0 Question: how does CPU know where the Page table is?

IT3030E, Fall 2024

68

Translation Using a Page Table

Page table register (J

Virtual address
31 30 29 28 27 -vvvvvevevennnnnnns15 14 13 12 11 10 8 B revveees 3210
Virtual page number Page offset
,\20 \\12
Valid Physical page number
b []
Page table
| 418
If 0 then page is not
present in memaory
20 28 2Fcciiiciinscatsssssannaasannaand e1B 14 13 12 11 10 9 Beafosass 19210
Physical page number Page offset
Physical address

IT3030E, Fall 2024

Page Fault Penalty and Storage Mapping

0 On page fault, the page must be fetched from disk
o Usually together with page replacement
o Takes millions of clock cycles
o Handled by OS code

Virtual page
number
Page table
Physical page or Physical memory
Valid disk address

-
Pa—S
.1_‘_‘_‘_‘_‘_‘_‘—-_
.h_‘_'_'_‘_‘—-—-—._.-
) o _—
o~ 7 .

8 /’f‘-

1

1

1

ki

0

A
@<~

ud v

1

0

=

Disk storage

,r"""'d_'_.—._._-__—-_-_‘_‘_‘_"\
\E____________F,,,_J"
\‘| | Memory pages can be stored

™ in disk page-file or swap space

J | Managed by OS

l |
— 70

Q\

\ /™
T~

K

/1

IT3030E, Fall 2024

Issues In virtual memory design

O Minimize cost for page fault and data write: minimize
page fault rate, and minimize disk write frequency

o Fully associative placement
o Smart replacement algorithms
o Write back approach

0 Fast address translation: this happens for every memory
access, it must be as fast as possible

o Caching the page table: Translation Look-aside Buffer (TLB)

IT3030E, Fall 2024

71

Page Replacement and Writes

0 Least-recently used (LRU) for page replacement
o Can be quite slow when number of page is large
0 Reference bit (aka use bit) in PTE set to 1 on access to page
o Periodically cleared to O by OS
o Pages with reference bit = 0 are considered for replacement

0 Disk writes take millions of cycles
o Disk write is slow and should be done in batches of data.
->Write through is impractical
o Use write-back
o Dirty bit in PTE set when page is written

IT3030E, Fall 2024

72

Fast Translation Using TLB

0 Address translation: two consecutive memory references
o One to access the PTE, then the actual memory access
0 Has good locality - page table can be cached

0O TLB (Translation Look-aside Buffer)
o New component inside CPU
0 Provides fast access to the most recent PTES

o Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100 cycles for
miss, 0.01%—-1% miss rate

o Only contains PTEs corresponding to physical pages

IT3030E, Fall 2024 73

Fast TranslationUsingaTLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
I |
1[/0]1 ..
1111 .~ Physical memory
1111 T~ -
0070 o~
1/0]1 -~
Page table
Physical page
Valid Dirty Ref or disk address
—
101 —
1{0/0 o« Disk storage
1/0]0 o« /—'——g\
1/0]1 -/ / -
101 o 7 []
1/0/1 o« / /] I]
)| 0 o~
1[1]1 « / | |
1111 « / /p/
1111 v

IT3030E, Fall 2024

TLB Miss Handler

O TLB miss indicates
o Page present, but PTE notin TLB
0 Page not present

0 Page present:
o Handler copies PTE from memory to TLB
o Then restarts instruction

Q If page not present: page fault will occur

IT3030E, Fall 2024

75

Page Fault Handler

0 Use faulting virtual address to find PTE (currently not
valid)

0 Locate page on disk

0 Choose a page in physical memory to replace
o If dirty, write-back the chosen page to disk first

0 Read page into memory and update page table

0 Make process runnable again
0 Restart from faulting instruction

IT3030E, Fall 2024

76

TLB and Cache Interaction

Virtual Memory - v 0 Physically addressed cache
| Wirtual page number | Page afisat | .
G o Cache uses physical address
e @ L I 0 Need to translate before
e m — S (2) cache lookup
@_
8= . 0 Slow performance
—— ®r— _
Physical page number | Page offset . D Vlrtua” addressed CaChe
. | Physical address 1ugpml H!:Jdars::imau J o Byt
Physical Memory s : I T f - o Skip TLB when in normal
cache access
"ﬁm T oue | o Aliasing problem:
' - Different virtual addresses for
el | W | shared physical address
o O Compromise: virtually indexed
e ; but physically tagged
_ iEg 0 No alias, but complicated
physical design

or virtual?

IT3030E, Fall 2024 77

Process and Memory protection

0 Process: an instance of a program in
execution

QO (Take the IT3070E - OS course for more details)

max

0 With separate memory space (virtual)
0 Share the common physical memory

0 Important data of a process: PC, register’s
values, page table

0 Memory must be protected

0 Read protection: processes not able to read
each other's memory

o Write protection: processes prohibited from
writing to other process’s memory

0O Super process: the OS

IT3030E, Fall 2024

stack

heap

data

text

78

Memory Protection

0 Read protection
o Virtual pages of separate processes map to disjoint physical pages.

o Placing page tables in protected address space of OS -
processes are not allowed to modify page tables.

0 Sharing data

0 OS creates a page table entry for a virtual page of one process to
point to physical page of another page.

o Write protection: use the write protection bit.

0 Hardware support for protection (used by OS)

o Special privileged supervisor mode (aka kernel mode) and
privileged instructions.

o Page tables and other state information only accessible in
supervisor mode.

o System call exception (e.g., ecall in RISC-V) to go from user mode
to supervisor mode.

IT3030E, Fall 2024 79

Summary

0 Memory hierarchy and the locality principal

0 Cache design
o Direct mapped
0 Set associative
0 Memory access when cache hit and miss

2 Virtual memory

0 Address translation
o TLB
0 Protection

IT3030E, Fall 2024

80

