Computer Architecture

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep
Department of Computer Engineering

School of Information and Communication Technology (SolCT)
Hanoi University of Science and Technology

E-mail: [trungnl, hungpn, hiephv]@soict.hust.edu.vn

IT3030E, Fall 2024

Chapter 5. The Processor

[with materials from Computer Organization and Design RISC-V, 2nd Edition,
Patterson & Hennessy, 2021, and M.J. Irwin’s presentation, PSU 2008]

IT3030E, Fall 2024

Review

High-level swap(size_t v[], size_t k)
language {

program size_t temp;

(in C) temp = v[k];

vik] = v[k+1];
v[k+1] = temp;

|

Assembly swap:

language s11i x6, x11, 3
program add x6, x10, x6
(for RISC-V) Tw x5, 0(x6)

Tw x7, 4(x6)
SW x7, 0(x6)
Sw x5, 4(x6)
jalr x0, 0(x1)

l

Assembler

Binary machine 00000000001101011001001100010011
language 00000000011001010000001100110011
program 00000000000000110011001010000011
(for RISC-V) 00000000100000110011001110000011
00000000011100110011000000100011
00000000010100110011010000100011
00000000000000001000000001100111

IT3030E, Fall 2024

Performance metric
CPU time=IC *CPI *CC

CPI: cycle per instruction
CC: clock cycle
IC: instruction count

How to improve?

« IC: ISA and compiler

« CC: hardware manufacturing

« CPI: CPU (logic) implementation

In this chapter
* Implementation of datapath
 How to improve CPI

Introduction

0 We will examine two CPU implementations

o A simplified version, to see the main components inside a CPU.

o A more realistic pipelined version, to see how CPI can be
Improved (based on the pipeling technique).

0 Simple subset which shows most aspects of RISC-V ISA.

o Memory reference: Tw, sw

o Arithmetic and logical: add, sub, and, or

0 Branching: beq

31 27 26 25 24 20 19 15 14 12 11 7
funct?7 | rs2 rsl funct3 rd opcode
imm|[11:0] rsl funct3 rd opcode
imm/[11:5] rs2 rsl funct3 imm/(4:0] opcode
imm[12/10:5] rs2 rsl funct3 | imm([4:1]/11] opcode
imm[31:12] rd opcode
imm[20]/10:1|11/19:12] rd opcode

R-type
I-type

S-type
B-type
U-type
J-type

add, sub, and, or

lw
sSwW

beq

0 Other instructions can be added later easily (hopefully).

IT3030E, Fall 2024

What we have so far

a Instruction cycle

o Fetch the instruction from memory using PC and update PC.
0 Decode the instruction.
0 Execute the instruction.

0 The operands and instruction set.
0 Memory model, code and data segments.

0 The module for add, sub, and other operations.

Memory Register File Arithmetics and Logic
8 bits . 32 bits R Unit
> < >
dd —I—>32 BLpisz d srcl addr —f 32 srcl
address 4—/—> ata —/—> —/_> —>
5 data
932 src2 addr —1* 32
locations locations
5
dst addr —/—> >ALU
32 grc2
i 32 data
write data —/—>
1
read write write control

IT3030E, Fall 2024 control control

Simple datapath overview (wo. multiplexor

0 CPU that can execute lw, sw, add, sub, and, or, beq.

0 We'll build this incrementally.

. N

> R

Add

|-> Data

Register #
| PC [#»| Address Instruction Registers >ALU Address
. Register # Data
Instruction o - M2
memory Register # y

»| Data

IT3030E, Fall 2024

Simple datapath overview (w. multiplexor and control

0 CPU that can execute lw, sw, add, sub, and, or, beq.
a We'll build this incrementally.

a ..then refine it to improve performance.

77N
Ml
u
x
=
4 —
&>
Add "*y [M
— u
X
L /
= Data \ =
Register # . ‘ e
= PC || Address Instruction 14 Registers 7\ pALU | Address
Register # M | Zero
Instruction J u / mg::: -
memory Register # maq\writ r,\x/ ry
1 Data

IT3030E, Fall 2024

Fetching Instructions

0 Fetching instruction involves

o reading the instruction from the Instruction Memory

0 updating the PC value to be the address of the next instruction
INn memory

clock l

Fetch

Exec

IT3030E, Fall 2024

)

Decode

\ 4

>Add

\

Read

\ 4

\ 4

Address

Instruction
Memory

Instruction [,

Increment by
4 for next
instruction

Decoding Instructions

0 Decoding instruction involves

0 Sending the fetched instruction’s opcode and function field bits
to the control unit

o The control unit send appropriate control signals to other parts
Inside CPU to execute the operations corresponds to the

Instruction
Fetch
RC = PC+4
) G
» Read Addr 1
Register D'Zte;;j I

Instruction »Read Addr 2

File

Write Addr

Read

] Data 2
Write Data

Example: reading two values from the Register File
—~>Register File addresses are contained in the instruction

IT3030E, Fall 2024

Executing R-format instructions (ALU instructions)

0 R format operations (add, sub, and, or)

funct7 rs2 1\ rsl } funct3 [rd opcode
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

0 read two register operands rs1 and rs2

0 perform operation (opcode and funct7, funct3) on values in rs1 and
s2

o store the result back into the Register File (into location rd)

Example: add x1, x2, x3

- Value of x2 and x3 are sent to ALU
- ALU execute the x2 + x3 operation
- Result is store into x1

IT3030E, Fall 2024 10

Executing R-format instructions (ALU instructions)

0 R format operations (add, sub, and, or)

funct7 rs2 rsl funct3 rd opcode

7 bits S bits 5 bits 3 bits S bits 7 bits

0 read two register operands rs1 and rs2

o perform operation (opcode and funct7, funct3) on values in rs1 and
s2

o store the result back into the Register File (into location rd)

Read ALU operation
register 1 Read h
data 1
Read
register 2 > Zero |—»
: Data ALU
: Registers > ALU
r:;::ter result
Read
Write data 2)
Data
| RegWrite
a. Registers b. ALU

Draw connection between a and b to form the execution unit?
IT3030E, Fall 2024 11

Executing R-format instructions (ALU instructions)

0 R format operations (add, sub, and, or)

funct7 ! rs2 ‘ rsi N funct3
7 bits 5 bits 5 bits 3 bits

0 read two register operands rs1 and rs2

|

rd | opcode
5 bits 7 bits

0 perform operation (opcode and funct7, funct3) on values in rs1 and

rs2

o store the result back into the Register File (into location rd)
ALU control

\ 4

o
pont

|, overflow
. Zzero

RegWrite
»Read Addr 1
Register DIzteaa(i
. »Read Addr 2
Instruction .
File
»|Write Addr
Read
Data 2
»\Write Data

v

e

IT3030E, Fall 2024

12

Executing Load and Store (Memory instructions)

0 Load and store operations involves
0 read register operands
o Calculate address using 12-bit offset
- Use ALU, but sign-extend offset
0 store: read from the Register File, write to the Data Memory
0 load: read from the Data Memory, write to the Register File

RegWrite ALU control MemWrite

l overflow l
Read Addr 1 Z€ro
Register Readf— =—p —plAddress

. Data 1
Instruction >Read Aliqlr 2 > Data
e Read Data
. ALU Memory
»\Write Addr Read
. Data 2— = —»\\/rite Data
—p(\\/rite Data
MemRead

Draw necessary connections to form execution unit?
IT3030E, Fall 2024 13

Executing Load and Store (Memory instructions)

0 Load and store operations involves

0 read register operands
o Calculate address using 12-bit offset
- Use ALU, but sign-extend offset
0 store: read from the Register File, write to the Data Memory
0 load: read from the Data Memory, write to the Register File

Instruction

RegWrite

l

\ 4

Read Addr 1

ALU control

- Read
Register
Read Addr2 Datal

IT3030E, Fall 2024

\ 4

File
Write Addr

\ 4

Read

, Data 2|
Write Data

MemWrite

l

—p(Address

overflow
Zero

>ALU

Imm

Gen

e

Data
Memory Read Data

Write Data

'

T

MemRead

14

Combining ALU and Memor

Instructions

- Re?dt 1 J ALU operation
register Read : \
| Read data 1 o
Instruction | register 2 ALUSrc _—
Registers p. 4 ALU
Write -o—(0 Address
L — result
register data 2 '&'
»| Write > 1x
data
] » Write
RegWrite data
o Imm
Gen

MemWrite
MemtoReg
Read
data 1
M
u
X
>0
Data
memory
MemRead

IT3030E, Fall 2024

Note: multiplexors are added when connecting
multiple inputs to one output

15

Executing Branch instruction (be
0 Branch operations involves

0 read register operands

o0 compare the operands (subtract, check zexro ALU output)

o compute the branch target address: adding the PC to the signed-
extended offset shifted left 1 bit.

»

Ad
4 —

i

\ 4

Instruction

beq tO, t1, dest

IT3030E, Fall 2024

\ 4

Read Addr 1
SterRead

> Branch
- target
- address
> Ad
ALU control

Zero (to branch

Regi
Read Addr Pata 1

) [
Write K(Jgr Read

\ 4

control logic)
>ALU

Write Data Data 2

\ Imm
\
gen

v

16

=

ull datapath for ALU, Memor

. Branchin

instructions

 J

PCSrc \
2

-
-

>Add

PC

M
. M|
X

>Add Sum -

Y

IT3030E, Fall 2024

ALUSrc

Y

4 —»|
Read
Read ‘ :
address register 1 Read
Read data 1
Instruction register 2
| Write Registers Reaqd
Instruction register data 2
memory
Write
data
RegWrite
Imm
Gen

4] ALU operation

N

MemWrite

MemtoReg

Read

Address deta

.| Write Data

data memory

MemRead

17

Designing a (very simple) ALU

QO Input/output

o Two data input: a, b ALLI operation
o ALU control signals {
o Data out \
o Flags out =
. —» Zero
a Operations > st | s wisa
O and, or > Overflow
0 add, subtract

b —»

CarryOut

IT3030E, Fall 2024 18

1-bit ALU with logic operation

Operation

T~
1) O~

0 What do we have if
o Operation = O:
o Operation = 1.

IT3030E, Fall 2024

l

0)

— Result

W

19

1-bit full-adder

Carryln

+ — Sum

i

CarryOut

CarryOut = (b - Carryln) + (a - Carryln) + (a - b)

Sum=(a-b- Carryln) + (a- b - Carryln) + (a - b - Carryln) + (a - b - Carryln)

IT3030E, Fall 2024 20

1-bit ALU with AND, OR, ADD

Operation
Carryln
a—te—»
Do
'_
1
Y
- N 5
h —+—e——» \ J
Y
CarryOut

0 Operation = 00:
0 Operation = 01
0 Operation = 10:

IT3030E, Fall 2024

» Result

21

How about 1-bit ALU with AND, OR, ADD, SUB?

Da-b=a+ (-b)= a+ (2's complement of b)

Binvert !
Carryin

a L - \ m
k_i) 1 H— Result
v {—
b — 0 .
- 2
-
\J
CarryOut

0 For SUB operation
o Operation =
0 Binvert =
o Carryln =

IT3030E, Fall 2024

22

Adding other operations, such as NOR and SLT

Cperatior

Carryln

Less

DoU

-
1
A A
+ c——‘

U

Do@’

a Ainvert is added

0 For NOR operation: a + b

o Ainvert =
0 Binvert =
o Operation =

IT3030E, Fall 2024

Qverflow
detection

ab

Overflow

23

ALU control signals

0 ALU operation:
o Load/Store: F = add
o Branch: F = subtract
0 R-type: F depends on opcode

0 Operation (Function) is selected based on 4 control bits

ALU control Function
0000 AND
0001 OR
0010 add
0110 subtract

IT3030E, Fall 2024

The missing things: control signhals
0 Memory modules, register files, ALU, multiplexors
require control signals to work.
o ALUSrc, MemToReg, RegWrite, MemRead, MemWrite, Branch.
0 ALUORp (2 bits).
0 Control signals are generated by:

o “ALU control” unit: responsilble for the ALU control signals.

“Control” unit: read/write signals, multiplexors input selector,
ALUOp to control “ALU control”.

Memto- | Reg- | Mem-
Reg Write | Read ALUOp:I. ALUOpO

R-format 0 0 0
Iw 1 1 1 1 0 0 0 0
sw 1 X 0 0 1 0 0 0
beq 0 X 0 0 0 1 0 1

Control signals generated by “Control” unit

IT3030E, Fall 2024 25

The missing things: control signals

Signal name Effect when deasserted Effect when asserted

RegWrite None. The register on the Write register input is
written with the value on the Write data input.
ALUSrc The second ALU operand comes The second ALU operand is the sign-extended,

from the second register file output | 12 bits of the instruction.
(Read data 2).

PCSrc The PC is replaced by the output of | The PC is replaced by the output of the adder
the adder that computes the value | that computes the branch target.
of PC + 4.

MemRead None. Data memory contents designated by the
address input are put on the Read data
output.

MemWrite None. Data memory contents designated by the

address input are replaced by the value on
the Write data input.

MemtoReg The value fed to the register Write | The value fed to the register Write data input
data input comes from the ALU. comes from the data memory.

IT3030E, Fall 2024

Datapath with Control unit and signals

>Add
»

\l".l Branch
f | MemRead
Instruction [6-0] | | MemtoReg
,!Controlx ALUOp

\ [MemWrite
\

\ ALUSrc

/ _RegWrite

‘Instruction [19-15] | Read

Read :
register 1
address X Read
Instruction [24-20
[] o Reaq datal

Instruction register 2

(310 [T instruction [11-7] Write Read
Instruction - register data 2
Shoret Write

data Registers Write Data
*1 data memory,

> /

Zero
>ALU ALU
result

Read

Address data

—

Oxeg=z—

[ALu)
.,control)—

\\.) /
N -

Instruction [30,14-12] |

Instruction [31-0]

IT3030E, Fall 2024

ALU control signals

0 Set by “ALU control” unit.
0 Based on 2-bit ALUOp and func3, func? fields

Instruction Desired ALU control
opcode Operation ALU action input

load word XXXXXXX 0010
SW 00 store word XXXXXXX XXX add 0010
beq 01 branch if equal XXXXXXX XXX subtract 0110
R-type 10 add 0000000 000 add 0010
R-type 10 sub 0100000 000 subtract 0110
R-type 10 and 0000000 111 AND 0000
R-type 10 or 0000000 110 OR 0001

ALU control signals

IT3030E, Fall 2024 28

ALU control signals

0 How ALU control signals are set?

-m-m-
ALUOp1 ALUOPO 1[31] 1[30] 1[29] 1I[28] 1[27] 1[26] 1[25] I[14] 1[13] 1[12] | Operation
0 0 X X X X X x | x I x | x X 0010
X 1 X X X X X X X X X X 0110
1 X 0 0 0 0 0 0 0 0 0 0 0010
1 X 0 1 0 0 0 0 0 0 0 0 0110
1 X 0 0 0 0 0 0 0 1 1 1 0000
1 X 0 0 0 0 0 0 0 1 1 0 0001

Not used Not used
—>

v v

IT3030E, Fall 2024 29

Datapath in operation for ALU instructions

>Add
4 —»
R
| PC s adegr%ss
Instruction
[31-0]
Instruction
memory
#x2 = 0x20
#x3 = 0x30
add x1, x2, x3

IT3030E, Fall 2024

Instruction [6-0] |

|

|
\
\

\ Branch

\ MemRead

| MemtoReg

» Control | ALUOD

[MemWrite

| ALUSrc

\ / Reg\NntE

Instruction [19-15] Read
* "| register 1 peag
Instruction [24-20] | Read data 1
register 2
Instruction [11-7) write ~ Read

*| register data?2

Write

Instruction [31-0]

data Registers

VR
/ \

{ Address

(Imm |
\ Gen /

/

Instruction [30,14-12]

[ALy L

|\control |

\.\\

F s

Read |
data

Data

memaory

Datapath in operation for lw instruction

4 —»

> Add

Instruction [6-0] |

PC Read

address

Instruction
[31-0]

Instruction

\

| Control

77\

\., Branch

| MemRead

MemtoReg

ALUOp

| MemWrite

/| ALUSrc

\ / Reanle

. Instruction [19-15]

_ | Read

Instruction [24-20]

register 1 peaqd

Read data 1

Instruction [11-7]

register 2
Read

o N8 data 2

memory

Iw x1, 100(x2)

IT3030E, Fall 2024

~ | register
Write

Instruction [31-0]

data Registers

“xc=2<

Instruction [30,14-12]

>3

/ \
[ALU

\

.control/.

N\

-

/

Address

Read |
data

-

31

Datapath in operation for beq instruction

4 — / >Add Sum

/ \ Branch
I; \ MemRead
Instruction [6-0] _ | . . ntro) |- MeMioReEg
ontro "ALUOp
\ | MemWrite
| ALUSrc
\ ‘ RegWrite
Instruction [19-15] Read
~(PC o~ gc?gu%ss 1 " | register 1 peaqg
Instruction [24-20] Read data1 -
Instruction " | register 2 T Zero
[31-0] Instruction [11-7] _ | Write Read ré\,LLl{ > Addre sstiEj 1
Instruction > register data2 = ok M
memory
Write = 0
dala Registers Writa Data
dal.a memory
beq xl’ XZ, DEST /'/’—\\‘\ |)]
Instruction [31-0] L aio §
.‘IcontrolJ.
e oof

-’

Instruction [30,14-12]

IT3030E, Fall 2024

Instruction Times (Critical Paths)

2 What is the clock cycle time assuming negligible

delays for muxes, control unit, sign extend, PC access,
shift left 1, wires, setup and hold times except:

C Instruction Fetch and Data Access (200 ps)

C ALU operation and adders (200 ps)

L Register File access (reads or writes) (100 ps)

Instruction | Instruction | Register ALU Data | Register Total
Class Fetch Read Operation | Access Write

Load (lw)

Store (sw)

sub, and, or)

R-format (add,

Branch (beq)

IT3030E, Fall 2024

33

Instruction Times (Critical Paths)

2 What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 1, wires, setup and hold times except:

C Instruction Fetch and Data Access (200 ps)
C ALU operation and adders (200 ps)
L Register File access (reads or writes) (100 ps)

Instruction | Instruction | Register ALU. Data Reg[ster Total
Class Fetch Read Operation | Access Write
Load (Iw) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store (sw) 200 ps 100 ps 200 ps 200 ps 700 ps
'_‘;'L%r’rgitdfaoﬂ‘;’ 200 ps 100 ps | 200 ps 100 ps | 600 ps
Branch (beq) 200 ps 100 ps 200 ps 500 ps

IT3030E, Fall 2024 34

Single Cycle Disadvantages & Advantages

0 Uses the clock cycle inefficiently — the clock cycle must
be timed to accommodate the slowest instruction

0 especially problematic for more complex instructions like
floating point multiply

_ Cycle & n Cycle 2 :
Clk I I |

[w I SW Waste

0 May be wasteful of area since some functional units
(e.g., adders) must be duplicated since they can not be
shared during a clock cycle

but
a Is simple and easy to understand

IT3030E, Fall 2024 35

How Can We Make The Computer Faster?

a Divide instruction cycles into smaller cycles

0O Executing instructions in parallel
o With only one CPU?

a Pipelining:

o Start fetching and executing the next instruction before the
current one has completed

o Overlapping execution

IT3030E, Fall 2024

36

Pipeline in real Iife

\f‘ 1‘1 - Il'l "I “

A more serious example: laundry work

0 Pipelined laundry boots performance up to 4 times

frmg _ BPM 7 8 9 10 11 12 1 2AM
MR OO O O .

Task

™ @5 With 4 loads
: .ﬁ.lﬁl Thormal = 42 = 8 hours
: S T pipeline = 3.5 hours

6 PM 7 8 9 10 1 12 1 2 AM

fime T T T 1
Taskm With n Ioads

order g
A .E. — Nn*
T Tomal = N*2 hours
¢ .. Tpipeline = (3+n)/2 hours
o SOl

4 stages: washing, drying, ironing, folding
Whenn 2 oo Tnormal 2 4*Tpipeline

IT3030E, Fall 2024 38

RISC-V Pipeline

0 Five stages, one step per stage
o IF: Instruction Fetch from Memory and Update PC
o ID: Instruction Decode and Register Read
0 EX: Execute R-type or calculate memory address
o MEM: Read/write the data from/to the Data Memory
o WB: Write the result data into the register file

i Cycle 1§Cycle 2 Cycle 3 Cycle 4 Cycle 5

F [o | ex T vem] ws

Execution time for a single instruction is always 5 cycles, regardless
of instruction operation

IT3030E, Fall 2024

39

Instruction pipeline

Cycle léCycIe 2 Cycle 3 Cycle 4 Cycle 5 Cycle 1§Cycle 2 Cycle 3 Cycle 4 Cycle 5

I I

[ex T vem] ws JF o

| Ex

[vem | ws

éCycIe 1 éCycIe 2 Cycle ’3;Cycle 4 Cycle 5§Cycle 6 éCycIe 7 éCycIe 8

—

1w

I=

SwW

R-type

Start fetching and executing the
next instruction before the current

Instructions in
pipeline

|
1
1
F_ [o] Ex IMEMiWB
1
|

vem [we

one has completed

IT3030E, Fall 2024

More than one instruction are
executed at a time

40

Pipeline performance

0 All modern processors are pipelined for performance

o0 Remember the performance equation:
CPU time =CPI*CC*IC

0 Under ideal conditions (balance) and with a large number
of instructions:

0 A five-stage pipeline is nearly five times faster because the CC
IS nearly five times faster

Time between instructions pejined
= Time between instructions,,ielined
Number of stages

0 Improves throughput - total amount of work done in a given time

0 Instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

0 In reality, speedup is less because of imbalance and overhead

IT3030E, Fall 2024 41

Single Cycle versus Pipeline

Slngle Cycle Implementatlon (CC 800 ps):

_ Cycle 1 : Cycle 2 :
Clk ; |
1w I SW §Wasté
Pipeline Implementation (CC = 200 ps): i 400ps

w [T o Jex [mem] ws

sw [IF__ [b JEex IMEMIWB:

Rtype[IF T 0 JEX IMEMi WB

0 To complete an entire instruction in the pipelined case
takes 1000 ps (as compared to 800 ps for the single
cycle case). Why ?

0 How long does each take to complete 1,000,000 adds ?

IT3030E, Fall 2024 42

Example with Iw instructions

Program
execution
order

(in instructions)

Iw x1, 100(x4)
Iw x2, 200(x4)

Iw x3, 400(x4)

Program
execution
order

(in instructions)

Iw x1, 100(x4)
Iw x2, 200(x4)

Iw x3, 400(x4)

IT3030E, Fall 2024

Single-cycle (Tc = 800ps)

1000 1200 1400 1600 1800

Time

200 400 600 800

Data
Reg| ALU nes Reg

Instruction
fetch

Time

Instruction Data
fetch Reg ALY access Reg

800 ps

Instruction
fetch

B ——— .. —

800 ps

800 ps

Pipelined (Tc = 200ps)

200 400 600 800 1000 1200 1400

Data

Instruction Reg| ALU Reg

fetch access

Data
Reg| ALU adcass Reg

Instruction

200 psS | fetch

Instruction Data
fetch Reg ALU access Reg

200 ps |

200 ps 200 ps 200 ps 200 ps 200 ps

43

Exercise

Assume that the following instructions are executed in
a 5-stage-pipelined RISC-V CPU. Draw the timeline of
each instruction

IF ID EX MEM WB

add s0, s1, s2
lw tO, O(t1)

sw t2, 0(t3)
bne s0O, s1, EXIT

IT3030E, Fall 2024

44

Simulating the RISC-V pipeline
0 Very handy tool: https://ripes.me/

< C

hitps //ripes.me

File Edit View Help

ga o< >

1co

1010
4

tor

.data

|
4 L text
5 la
L] la
! nop
nop
g nop
10 add
N Iw
1 5
1 bne

15 nog

Console

IT3030E, Fall 2024

1000 ms

Source code

word 199
word 200

ti, M
ti, N

80, s, 82
té, a(t1)

t2, 4(23)
%8, =1, EXIY

Memory

Input type: * Assembly

—

Address

Ox10000008
Bx 12000024
Bx 10084000

Executable code

0: 19680317

4: 99030313

8 10080017

c: ffcedell

18: 00R00013

14: 00000013

18: Q0000013

ic: Q1248433

20: @0832283

24: 0072023

28: 0941263

000A0A2c <EXIT>:
2¢: QBR00aT3
Word Byte0

0x00002008 0xae
2x0800008c8 Oxc8
xdORaON6a Ox64

View mode:

Binary ¢ Disassembled

aulpc x6 Dx10200
aodi x6 x5 @
auipc x28 Ox10009
addi x28 x28 -4
addi xQ xB @
addi x0 x8 @
addi x@ x0 0
add x8 x§ x18
1w x5 @ x6

(o)

B
MEM

su x7 0 x28
mu—xn:H

addi x0 x00 OSNERE
Bytel Byte2 Byte3 ~
9x00 dx0a Bx0d
ax0o @xea 2x0d
Yxil® UxBg i

45

Simulating the RISC-V pipeline

0 Support several CPU configurations
0 Note: be careful, data hazards happens with la/li pseudo-

Instructions
] .data
2 M:.word 100
3 N:.word 200
4 .text 0: 10000317 auipc x6 0x10000
5 la t1, M 4: 00030313 addi x6 x6 0
! Select Processor X
* RISC-V Name: 5-stage processor
~ 32-bit
Single-cycle processor ISA: RV321
5-stage processor w/o forwarding or hazard detection ISA Exts. VM C

5-stage processor w/o hazard detection

5-Stage processor w/o forwarding unit Layout Standard

6-stage dual-issue processor A 5-stage in-order processor with hazard
+ 64-bit detection/elimination and forwarding.
MIPS Description:

Register initialization

x2 (sp) = Ox7ffffff0 X
x3 (gp) ~ 0x10000000 X
+

i OK | Cancel

IT3030E, Fall 2024 46

Pipeline Hazards

0 Pipeline can lead us into troubles!!!

0 Hazards: situations that prevent starting the next
Instruction in the next cycle

o structural hazards: attempt to use the same resource by two
different instructions at the same time

0 data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

0 control hazards: attempt to make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch and jump instructions, exceptions

a In most cases, hazard can be solved simply by waiting
0 but we need better solutions to take advantages of pipeline

IT3030E, Fall 2024

47

Structure Hazards

2 Conflict for use of a resource

a In RISC-V pipeline with a single memory
0 Load/store requires data access

0 Instruction fetch would have to stall for that cycle
- Would cause a pipeline “bubble”

0 Hence, pipelined datapaths require separate
Instruction/data memories

o Or separate instruction/data caches

IT3030E, Fall 2024

48

A Single Memory Would Be a Structural Hazard

Time (clock cycles)

lw t/\em J:Reg_%

Inst 1 t/\em I_[Regg

éReading dafia from
imemory i

T~ N 5 -

7| [N

Inst 2 A

Inst 3

HCDQ_HO

Reg

Inst4 Reajling instruction H"em 17
' fromi membpry i i :

0 Fix with separate instr and data memories (I$ and D$)

IT3030E, Fall 2024

How About Register File Access?
Time (clock cycles)

add $x1[m L

]

Inst 1

T~ N S5 -

Reg

Inst 2

HCDQ_HO

add $x2,$xi,

clock edge that controls

register writing

IT3030E, Fall 2024

 [1m

: Fix register file
gccessihazard by
dbing réads in the
second:half of the
cycle anid writes in

t@e first half

‘DM

Regf

C
l/
R

clock edg

‘DM [:I, Regf

e that controls

loading of pipeline state

registers

50

Data Hazards

2 An instruction depends on completion of data
access by a previous instruction

oadd x19, x0, x1
sub x2, x19, x3

' 200 400 600 800 1000 1200 1400 1600
Time T T T T T T T >
add x19, x0, x1 IE " |D >EX W ' stalls inserted by
o hardware (hazard
7/

f Y % detection) or software
CPU must wait bubble <K ubb bubble bubble bubble (compiler)
until data in x19 P
becomes valid bub le C(b@ (_ bubble {@
e

sub x2, x19, x3 D ﬁ MEM

IT3030E, Fall 2024 51

Example

0 Dependencies backward in time cause hazards

add

sub

and

or

XOor

x30, IM

x4 ,x30,x5

x6,x30,57

x8,x30,x9

$4,530,85

[1m

Regf

.

[1m

O Read before write data hazard

IT3030E, Fall 2024

Reg

52

Example
0 Dependencies backward in time cause hazards

sub x4,x1,x5 [P[R N\ B ed]

-~ W0 S —

and x6,x1,x7 é é IM

or x8,x1,x9

- ® aoa-=0

xor x4 ,x1,x5

a Load-use data hazard

IT3030E, Fall 2024

Solving hazard with Forwarding (aka Bypassing)

0 Use result when it is computed
o Don’t wait for it to be stored in a register
0 Requires extra connections in the datapath

0 Forward from EX to EX (output to input)

Program

execution ' 200 400 600 800 1000
order Time . . ' ' '
(in instructions)

add x1, x2, x3 IF

MEM WB

SEX MEM WB |

sub x4, x1, x5

IT3030E, Fall 2024 54

Exercise

0 What is the value of t2 after the below code is executed
In the following CPU

o CPU without hazard detection or forwarding
o CPU with hazard detection but no forwarding
o CPU with forwarding

i t0, zero, 100
i t1, zero, 200
t2, to, t1

ddC
ddC
addC
nop
D
D
D

no
no
no

IT3030E, Fall 2024

Exercise

0 CPU without hazard detection or forwarding

0 Incorrect value in t2 because of data hazard

Source code

0O~ OY U o N =

w

11
12
13

14

.data
M:.word 100
N:.word 200
.text
addi t@, zero, 100
addi t1, zero, 200
add t2, t@, ti
nop
nop
nop
nop
nop
nop
nop

IT3030E, Fall 2024

Input type: ® Assembly

gpr
Name Alias
x1 ra
X2 sp
X3 gp
x4 tp
x5 to
x6 tl
x7 t2
x8 sO
x9 sl

0x00000000
0x00000000
ox7ffffffeo
0x10000000
0x00000000
0x00000064
0x000000c8
0x00000000
0x00000000

0x00000000

Value

56

Exercise

0 CPU with hazard detection but no forwarding
o Correct value in t2 but with additional 2 stalls

.text
addi t@, zero, 100
addi t1, zero, 200

gpr

add t2, te, ti
nop
nop
nop

[y

Name Alias Value
| - 9x00000000

—

DOUERNOOU A DOV B © WO~ S WSO NS

.text
addi t@, zero, 100
addi t1, zero, 200

ixl ra 0x00000000
add t2, te, ti t !

nop X2 sp oxIffffffo
nop L L il
1 ; 1:_ex::mD 1 X3 gp 0x10000000

addi t@, zero, 100
addi t1, zero, 200

x4 tp 0x00000000
add t2, te, t1

i x5 tO 0x00000064
1 nop l ! !
.text X6 tl 0x000000c8

addi t@, zero, 100
addi t1, zero, 200
add t2, te, ti

nop

nop

x8 sO 0x00000000

nop [[| =

'x9 sl 0x00000000

—

IT3030E, Fall 2024 57

Exercise

0 CPU with forwarding
o Correct value in t2 with no additional stalls
0 Is hazard detection required in this case?

| .data

2 M:.word 100
3 N:.word 200

4 .text

< addi t@, zero, 100
6 addi t1, zero, 200
7 add t2, te, ti

8 nop
9 nop
10 nop

11 nop
12 nop

IT3030E, Fall 2024

WB
MEM
EX

o

gpr

Name Alias
x1 ra
X2 Sp
X3 gap
x4 tp
x5 to
X6 tl
Xl T2
x8 sO
x9 sl

0x00000000
0x00000000
ox7ffffffo
0x10000000
0x00000000
0x00000064
0x000000c8
0x0000012c
0x00000000

0x00000000

Value

58

Solving Load-Use Data Hazard
0 Forward from MEM (output) to EX (input)

0 Can’t always avoid stalls by forwarding
o If value not computed when needed
o Can’t forward backward in time!

0 One cycle stall is necessary = handle by software, or by
hardware hazard detection

Program
execution _ 200 400 600 800 1000 1200 1400
order Time T T T T T . T
(in instructions) R , .
Iw x1, 0(x2) IE =S 1D MEM/(—+— WB :
prmé,.‘ (_Lmljbbl(r;-,}' bL}]bDIG.‘:‘ bL’J bbl(]}, ":blilpbl(ljy'
sub x4, x1, x5 IF —= MEM WB |

59

IT3(}OUE, ral cvuc+

Exercise

0 What is the value of t2 after the below code is executed
In the following CPU configuration

o Without hazard detection or .data
forwarding M:.word 100
o With forwarding but no hazard text
detection auipc t1, ©x10000 #la tl1, M
o With hazard detection but no nop
forwarding :SE
o With both hazard detection and nop
forwarding lw t0, 0(t1)
addi t2, to, 100
nop
nop
nop

nop

IT3030E, Fall 2024 60

Exercise

0 Without hazard detection or forwarding
0 t2 = 0x64

0 With forwarding but no hazard detection
0 t2 = 0x64

0 With hazard detection but no forwarding
0 t2 = 0xc8, with additional 2 stalls

0 With both hazard detection and forwarding
o t2 = Oxc8, with additional 1 stall

IT3030E, Fall 2024

61

Code scheduling to avoid stalls

0 Reorder code to avoid use of load result in the next
Instruction

aCcode: A =B + E;

C=B + F;
Tw t1, 0(t0) Tw tl, 0Ct0)
Tw (t0)

T add 3, el @

sw t3, 12(t0)
w (t4,)8(t0)

P add €5, 1, (14 add t5, tl

sw t5, 16(t0) sw t5, 16(t0)

IT3030E, Fall 2024

62

Control hazards

2 Branch determines flow of control
0 Fetching next instruction depends on branch outcome

0 Pipeline can’t always fetch correct instruction
- Still working on ID stage of branch

21In RISC-V pipeline

0 Need to compare registers and compute target
early in the pipeline

0 Add hardware to do it in ID stage

IT3030E, Fall 2024

63

Branch instructions cause control hazards

»

0 Dependencies backward in time cause hazards

beq IM

1w

T~ N 5 -

Inst 3

Inst 4

HCDQ_HO

Reg

IT3030E, Fall 2024

Solving control hazards
0 Delayed branch

2 Compute target earlier
0 Reduce number of stall cycles per branch instr.

0 Need to compare registers and compute target
early in the pipeline.

0 Add hardware to do it in ID stage.
0 May cause additional stall in case of data hazards.

2 Branch prediction
0 Heuristically improve overall performance.
o Complicated datapath with additional component.

IT3030E, Fall 2024

65

Stall on Branch (Delayed branch)

0 Wait until branch outcome determined before fetching
next instruction

Program
execution Ti 200 400 600 800 1000 1200 1400
ime I I I T I I T
order
(in instructions)
Instruction Data
add X4' XS' X6 fetch Reg ALY access Reg
beq x1, X0, 40 ~+———{!nstruction Reg| ALU Data [y
1 . . 200 ps fetch 9 access g
~ O / --»'/ \“ E ™ = N ’_.—_’/ 2 \ > 7 _‘,",/‘ g "‘\\7
‘ [> | { ™\ = l. f r ‘...—L Y \.\1 /’,_‘vl / .',
(bubble/(bubbled bubble/ bubbley/(bubbley
L) Ll 7 gl) U AL g X S
or X7, x8. x9 =« »{Instruction Data
Y 400 ps fetch Reg| ALY access |9

IT3030E, Fall 2024

66

Branch prediction

0 Predict outcome of branch
0 Only stall if prediction is wrong

a In RISC-V pipeline
o Can predict branches not taken
o Fetch instruction after branch, with no delay

IT3030E, Fall 2024

67

RISC-V with Predict Not Taken

Program

execution Time 200 400 600 800 1000 1200 1400
order 1 L L] 1 Ll I]
(in instructions)
add x4, x5, x6 |"eei [Reg| A | D2 Reg
Prediction Instruction Data
correct beq x1, x0, 40 <20T'ps’ fetch Reg| ALU access | €9
Iw x3, 400(x0) 200 ps nsiuction] |Reg| A | D@ |Reg
A
Program
execution Time 200 400 600 800 1000 1200 1400
order 1 L 1 1 1 1 lJ
(in instructions)
Instruction Data
Prediction add x4, x5, x6 fotch Reg| AL | - = |Reg
incorrect beq x1, x0, 40 m'"s}ggfm Reg| AU [D Igeg
— , “b DXbuobiXhusbieXhubblsdchupbie
bu ble/_bubble/A bubble/ bu blef bubble
r\u&, Whs whew,
—or X7, x8, x9 *|Instruction Data
' 400 ps fetch Reg| LU access | R°9

IT3030E, Fall 2024

68

More-realistic branch prediction

0 Static branch prediction
o Based on typical branch behavior

o Example: loop and if-statement branches
- Predict backward branches taken
- Predict forward branches not taken

0 Dynamic branch prediction
o Hardware measures actual branch behavior
- e.g., record recent history of each branch

o Assume future behavior will continue the trend
- When wrong, stall while re-fetching, and update history

o Accuracy can reach >90% with SPectiInt

IT3030E, Fall 2024

69

Designing RISC-V Pipelined Datapath

0 Let's see how pipelined datapath works
o All stages can work simultaneously.
o Output from previous stage/cycle is input of next stage/cycle.

2 And how it is constructed
0 Pipeline diagrams for load & store instructions.
o Adding supports for handling hazards.

IT3030E, Fall 2024

70

D

esi

ning RISC-V pi

elined datapath

IF: Instruction fetch : ID: Instruction decode/ : EX: Execute/ : MEM: Memory access : WB: Write back
register file read	address calculation	
I		
1		
[

4> | | | |
I		
	>ADD Sum t I	
	>	
: Read Read	.	:
i T		
Address I register 1 data 1		'
—————e		
Read		
register 2	Address	
Instruction ! Registers		R:;: :
Write Read	: Data I	
Instruction	register data 2	
memory	Write	I I
: data : ! Write :		
		" dete I
I	I	
S I	I	
G	I	
I -	I I	
		I
I		
		I
1 } L		
		I
I		
		I
I	I	

71

Pipeline reqgisters

0 Need registers between stages
o To hold information produced in previous cycle

IFAD IDVEX EX/MEM MEMAVE
> Add r\
4 — gw Sum
-
PC Address § o | Read
H rogistor 1 Read
—— @ data 1
= ¢—a| Read > Zero —
Instruction register 2 ALU
Registers ALU Read
memory — Wiike Read = o Address data ™ et
data 2 M
regstar g Data
—— % memory
data l ool
Writa
cats
_ [Imm
»\ Gen

IT3030E, Fall 2024

=

stage

Iw

Instruction fetch

>Add

IFID

Instruction
memory

IT3030E, Fall 2024

IDEX

Instructon

Read

- Read
register 1 Perre
Read
register 2

Registers ..
Write data 2
register
Write
data
Imm
=\ Gen

EXMEM
YAdd Sum
> Zero > B
ALU
ALU o
result > ~@—»-| Address
memory
e | Write
= data

Read
data

MEMWE

73

1D

stage

Iw

Instruction decode |

[r—
4 —
2
.
Address
-
Instruction
memory

IT3030E, Fall 2024

data

MEMWB

IFID ID/EX EX/MEM
YAdd Sum
é | Read
2| 7 |registert Read > >
? data 1
s Read —
register 2
Registers Raaq =l > | Address
Write dma 2 i
register Doka
Write memory
data
| Write
> | data
Imm
™=l Gen

74

E

X stage

Exocution

IT3030E,

IF/ID

ID/EX

EX/MEM

> Add
4 —
»
Address
Instruction
memory
Fall 2024

Read
> Read =
% register 1 data 1
= Read
2 register 2
Registers .
Write Read o
register data 2
> Write
data
Imm
Gen

g

* e 2°
\
£

Read
Address dataa
Data
memory
Write
data

MEM/WE

MEM stage for the lw instruction

YAdd Su

IFID IDVEX
> Add
4 —
Address é _ | Read R
g7 [recister 1 8bd
L ooy data 1
- | Read
Instruction register 2
memory Registers poag
Write data 2
register
Wite
"~ | data
Imm
Gen

IT3030E, Fall 2024

| W |

! Memory I
EX/MEM MEMWEB
> a
> Read
> | Address data ™ —

Data
memory
Write

asg 7| data

76

WB for the |lw instruction

—
Address
-

Instruction
memory

r

instruction

NAR

Wrong write
register

register Read
. data 1
Read
ragister
w.l’! Read

Wite data 2
register
Write
data

o Imm

1 Gen

Zero

DAL oy
resull

0

Write-back

MEMWEB

IT3030E, Fall 2024

77

Correction to su

ort Load instruction

0 Correct the write register

IFAD

T3

Addross

Instruction
memory

IT3030E, Fall 2024

IDEX

Read
register 1

Read

Instruction
A

o
5§ ¢

g£s

ar
Registers o

Read

data 1

data 2

MEMWE

EX/MEM
@ 1
> o b
ALU
ALU a
> - Address
Data
memory
= Wnie
o o | data

o

78

Datapath in all five stages of a load instruction

a lw is the “longest” instruction, all stages are utilized.

-

Address

Instruction
memory

IT3030E, Fall 2024

IFID ID/EX EX/IMEM
B—
£
= Raead
* | rogistor 1 Read >
g data 1 = \
& Read Zero i -
I ™| register 2 ALU
Registers Read = > ALU —
Write data 2 > result B
/
. Write
data

MEMWS

79

EX for the sw Instruction

Execution

IFAD ID/EX EX/MEM MEM/WB
> Add > \
4 —» W) =
Address c Read
: Read
o register 1 el - \
g | Read Zero - -
Instruction < register 2 >AI-U o X Read |
oY, Write R‘“"“"Read resuit 7| ddress data
register data 2 / Data
Write mamory
data
i Write
o © | data
Imm L iIg >
| Gen
80

IT3030E, Fall 2024

EX for the sw Instruction

IFND IDFEX
o | Road
> Read »
register 1 data 1
| Read
register 2
[write ROS'StO™S g ad >
register data 2
Write
data

o

EX/MEM
e
- - Address
"
memory

Write
data

MEM/WE

®

IT3030E, Fall 2024

MEM for the sw instruction

sw
I I

Memory

IFD IDIEX EXMEM MEMWE
DA > >
4 — I' YAdd Sum !

| 2
e
Address % | Read R
o | ister 1 & > >
é i data 1
- | Read > Zero > .
Instruction l register 2 ALY
> Registers ... ALU > L o->-| Aikhues Read [| -
memory | write data' - - resull data
register | Data
Write memory
data @
- o | Write
o 7| data
. — :

IT3030E, Fall 2024

WB for the sw instruction

4 —

—
Address
—

memory

IT3030E, Fall 2024

IF1D IDEX
§
= . | Read
< ister 1 Read =
i e data 1 >
- Read
register 2
R.ﬂ'm Read
Write data 2 .
register
Write
data
= imm
L Gen

| sSw \
White-back

MEM/WB

EXMEM
YAdd Sum
> Zeco > Pt
ALU
ALU
result | Address
~ | Write
v data

Data
memory

83

Graphically representing pipelines

0 Two ways to represent pipeline graphically

0 Multi-cycle pipeline diagram
- Represent the pipeline states through several clock cycles.
- Simpler, see the whole picture.
- Do not contain all the details of each stage.

o Single cycle pipeline diagram
- Show the state of the entire datapath in a single clock cycle.
- Focus on the details but not the whole picture.

IT3030E, Fall 2024

84

Multi-cycle

Ipeline diagram

Program
execution
order

(in instructions)

Iw x10, 40(x1)

sub x11, x2, x3

add x12, x3, x4

Iw x13, 48(x1)

add x14, x5, x6

\J

IT3030E, Fall 2024

Time (in clock cycles)
CC3

CC1

CC2

L

CC4

CC5

1
—Reg

CC6 CC7 CC8 CC9

N |
—Reg

s

—E'R_eg_ —>AL DM e_gl:

85

Multi-cycle pipeline diagram

a Traditional form

Program
execution
order

(in instructions)

Iw x10, 40(x1)
sub x11, x2, x3
add x12, x3, x4
Iw x13, 48(x1)

add x14, x5, x6

IT3030E, Fall 2024

Time (in clock cycles)

Y

cC1 CC2 CcC3 CC4 CCSH CC6®6b CC7 CcC8 CC9
Instruction | Instruction Eisdiition Data Write-back
fetch decode access
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction Exacation Data Write-back
fetch decode access
Instruction | Instruction . Data ,
fetch darnda Execution Aiiany Write-back
Instruction | Instruction Execution Data Write-back
fetch decode access
86

Single-cycle pipeline diagram

0 Snapshot of pipeline status in a given cycle

add x14, x5, x6 | Iw x13, 48(x1) | add x12, x3, x4 | sub x11, x2, x3 | Iw x10, 40(x1) |

Instruction fetch | Instruction decode | Execution | Memory | Write-back |

IF/ID IDIEX EX/'MEM MEM/WB

Read

5 register 1 Read >

§ data 1

= Read Zero -

G —t
Instruction s register2 >AI.U ALU Read

4 Registers -)

9 Read 0 resuk Address data [

"xez™

memo
oy o | Wit data 2 &
ragistar 3 / Data

Write x memory
data 1
Write
- | data

IT3030E, Fall 2024 87

Example

0O See how the lw instruction is executed through 5 pipeline
stages

o The nop instructions are to flush the pipeline

Source code Input type: @© Assembly)
1 .data
2 M:.word 100
3 .text
4 la s1, M
5 nop
6 nop
7 nop
8 1w t1, 0(s1) wB
9 nop ME
10 nop EX
2 o C —
12 nop 7
13 nop

IT3030E, Fall 2024 88

Simulating the RISC-V pipeline

0 Single cycle pipeline diagram showing execution of lw

5-Stage RISC-V Processor w/o Forwarding Unit
addix0 x0 0 addix0x00 lw x50 x6 addix0x00 addix0x00

IT3030E, Fall 2024

Pipelined datapath with control si

nal

sim

lified

“xec=°

IFAD

-

Address

Instruction
memory

IT3030E, Fall 2024

IDEX

e

agWrite

!

Read
register 1

Read
register 2

register

Instruction
s I

Wiite
data

Wiks Regiswtﬁ ot i

Read o

EX/MEM

data 1 o

data 2

Instruction
[31-0]

ALUSre

-

YAdd 4y
result

\

/ \4/

Zero'}

MEM/WEB

*| Address

Data
memory

Write

Instruction
[30, 14-12]

Instruction
[11-7]

data

Read
data

MamtoReg

e a

90

Pipelined Control

2 Control signals derived from instruction
o As in single-cycle implementation

N\ "lwB
Instruction -
Control E M L WB
},f - Ex N - . |
- - M WB
pd N L - _
IF/ID ID/EX EX/MEM MEM/WB

IT3030E, Fall 2024 91

Pipelined datapath with Control

IDVEX

IFD o

4 —» I‘ YAddSum
Branch
E ALLUSre -y __A
| ™ = /
. o £ |
PC § Read E|
register 1 Read -
- g data 1 a0
) " Rea'gw 2 >ALU Zoro -
nstruction = reg AU L Read ||
memory —9 e Roghl-nR i 6 result Address data
! data 2 M =
g u / Data
| Write X memory
data -1
Write
data
Instruction
[31-0) Imm _
G‘ﬁ R / s \ \ M R
Instruction { acu
lanl 14-12] \ L ,."':’!l'
- J
Instruction B
[11-7
- - -
- - - -
- - - i
A7

Rd is sent through the pipeline

IT3030E, Fall 2024 £ se in apppropriate time in WB

Pipeline implementation for solving hazard

0 What we have built sofa is for pipeline without hazard

0 Now, adding more hardware to solve the hazard
0 Read before write data hazard
o Load — use data hazard
o Control hazard

IT3030E, Fall 2024

93

Solving data hazard with forwarding

Time (in clock cycles)
Value of CC1 CC2 CC3 CC4 CC5 CC6

register x2: 10 10 10 10 10/-20 =20

Program
execution
order

(in instructions)

sub x2, x1, x3

and x12, x2, x5

or x13, x6, x2

add x14, x2, x2

v Swx15, 100(x2)

IT3030E, Fall 2024

CC7

‘—Q

DM

CcC8 CcC9
-20 -20
"z
9
=1}
Reg}

94

D

atapath with Forwardin

ID/EX add x12, x2, x5 sub x2, x1, x3
i’" s EX/MEM
—’“ ol - M ';“'.";xj_ ; MEM,WB
IF/ID Lo|EX | M| —|WB|
— “{u]
- u
T i B
B Registers Vs > ALU - -
w —
Instruction = - a
memory - o lu ” Data
X memory
i J
t
IF/ID.RegisterRs1 Rs1 . -
IF/ID.RegisterRs2 | |Rs2
IF/ID.RegisterRd _ Rd EX/MEM RegisterRd
-7 | Rd = x2
.- RIXX2 Forvwarding 7= | MEMWB RegisterRd
P P = s uni ‘ //, 2
\ A 4
Rs1 and Rs2 are d . .
also sent to EX \
4 K

Condition for MEM to EX forwarding

The datapath modified to resolve hazards via forwarding

IT3030E, Fall 2024

ALU — ALU forwarding

97

D

atapath with Forwardin

l | Instruction

memory

e or x13, X6, x2 add x12, x2, x5 sub x2, x1, x3
' e EX/MEM
T s l“’ B MEM/WE
IF/ID L.IEX TN Wl
ﬁ”
I
c
S -
- .
§ Registers > ALU .
w -
£ s
— ~ M
o Data
K Ty memory
>
P
IF/ID.RegisterRs1 Rs1 . -
IF/ID.RegisterRs2 | |Rs2
IF/ID.RegisterRd | [Rd| EX/MEM RegisterRd
’,/] v Rd=x2
e o] Forwarding < MEM/WB RegisterRd
PR > in / =
o Rs2=x2 cu 1
Rsl and Rs2 are N ="
also sent to EX RS =

. a7
Condition for WB to EX forwarding

The datapath modified to resolve hazards via forwarding

IT3030E, Fall 2024

Full path forwarding

98

Read before write data hazard

0 Require forwarding unit, the forwarding could be
o ALU — ALU forwarding
o Full path forwarding (MEM to ALU forwarding)
o No stall is required

IT3030E, Fall 2024

99

Load-Use Data Hazard

.

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC 10

Program
o Detect hazard
(in instructions) ‘ and insert stall

lw %2, 20(x1) eg || >

bubble

and becomes nop

and x4, x2, x5 IIIl—F

or x8, x2, x6

| add x9, x4, x2

IT3030E, Fall 2024 100

How to stall the pipeline

2 Force control values in ID/EX register to O
o EX, MEM and WB do nop (no-operation)

a Prevent update of PC and IF/ID register
0 Using instruction is decoded again
0 Following instruction is fetched again

0 1-cycle stall allows MEM to read data for 1w
- Can subsequently forward to EX stage

IT3030E, Fall 2024 101

Datapath with hazard detection

f
I

PC Instruction
‘ | memory

Hazard

—— ID/EX.MemRead
—e. detection - ———
—- unit Indicates a Iw inst.
= Rs1
S Rs2 Rd of lw | IDEX
o N Wi
= be EX/MEM
! | - Iwm | el
.'Cnntm!‘ ~lu ¥ ‘ I'WE LTEM’WB
IF/ID (o= Lex| L. w wa|—
r\
> M
u
2 X
g Registers \‘/ - =
x‘ on .‘..U i
g 2 YALU
Wl ': Data
mem
X 5ol
_/
B
rwardB
IF/ID.RegisterRs1 . a
IF/ID.RegisterRs2
IF/ID.RegisterRd Rd
_I?‘E:‘ Fz)vw.xndlvlgi.:__
y unit !

Note: the O input, PCWrite, IF/ID write are to stall the pipeline

IT3030E, Fall 2024

102

Load use data hazard
0 Require detection unit to detect load-use hazard

O Must have one stall

0 Require forwarding unit to forward from MEM stage to
ALU stage

IT3030E, Fall 2024 103

Control hazard: early branch calculation +predict not-taken

0 In case the branch is actually taken

and x12, x2, x5 beq x1, x3, 16 | sub x10, x4, x8 before<1> | before<2>
fetched as if branch not taken; '

IF Flush ; : ; !

M /" Hazard "\ .
detection ! |

" unit P 4

r_
@
\
:
i_‘
[5]
l

O b
5

Regi ¢ , E— : =
x3 '
o X8 Data
16 memory

_.l unit

.. /‘

10
' —
- _.jF orwaordh «\g‘r— !

Clock 3

IT3030E, Fall 2024 104

Control hazard: early branch calculation +predict not-taken

0 In case the branch is actually taken

and x12, x2, x5 replaced by bubble

- Id x4, 50(x7) ' Bubble (nop) ' beq x1, x3, 16 ‘ subx10,... . Dbefore<i>
IF.Flush ' 3 ! >
| / Fazard
=1 detection =
unit
1|,
G
Regrsters
L 7
@
Gen
; e
Clock 4 ‘ H

IT3030E, Fall 2024 105

Summar

2 ISA influences design of datapath and control.
2 All modern-day processors use pipelining.

2 Pipelining doesn’t help latency of a single
Instruction, it helps throughput of entire workload.

2 Potential speedup: a CPI of 1 and a fast CC.

d Must detect and resolve hazards.
0 Structural, data, control.

o Stalling negatively affects CPIl (makes CPIl worse than
the ideal of 1).

IT3030E, Fall 2024 107

Summary

0 Design of datapath
o Single cycle non-pipelined CPU
o Multi-cycle pipelined CPU

0 Solving hazards
o Structural hazards: I/D caches and separate register read/write

n Data hazards:

- Hazard detection present/not present: stalls are added by software
or hardware.

- Forwarding: no forwarding/partial forwarding/full forwarding.
o Control hazard:

- Early target calculation or not.

- Delayed branch, static/dynamic prediction.

IT3030E, Fall 2024 108

