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Review

Performance metric

CPU time = IC * CPI * CC

CPI: cycle per instruction

CC: clock cycle

IC: instruction count

How to improve?

• IC: ISA and compiler

• CC: hardware manufacturing

• CPI: CPU (logic) implementation

In this chapter

• Implementation of datapath

• How to improve CPI
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Introduction

❑ We will examine two CPU implementations

A simplified version, to see the main components inside a CPU.

A more realistic pipelined version, to see how CPI can be 
improved (based on the pipeling technique).

❑ Simple subset which shows most aspects of RISC-V ISA.

Memory reference: lw, sw

Arithmetic and logical: add, sub, and, or

Branching: beq

❑ Other instructions can be added later easily (hopefully).

add, sub, and, or
lw
sw
beq
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What we have so far

❑ Instruction cycle

Fetch the instruction from memory using PC and update PC.

Decode the instruction.

Execute the instruction.

❑ The operands and instruction set.

❑ Memory model, code and data segments.

❑ The module for add, sub, and other operations.

Fetch

PC = PC+4

DecodeExec

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

write control

Memory

address

8 bits

data

232

locations

8/16/3232

write 
control

read
control

Arithmetics and Logic 
Unit
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Simple datapath overview (wo. multiplexor)

❑ CPU that can execute lw, sw, add, sub, and, or, beq.

❑ We’ll build this incrementally.
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Simple datapath overview (w. multiplexor and control)

❑ CPU that can execute lw, sw, add, sub, and, or, beq.

❑ We’ll build this incrementally.

❑ ..then refine it to improve performance.
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Fetching Instructions

❑ Fetching instruction involves

reading the instruction from the Instruction Memory

updating the PC value to be the address of the next instruction 
in memory

Read

Address
Instruction

Instruction

Memory

Add

PC

4Fetch

PC = PC+4

DecodeExec

clock

Increment by 

4 for next 

instruction
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Decoding Instructions

❑ Decoding instruction involves
Sending the fetched instruction’s opcode and function field bits 
to the control unit

The control unit send appropriate control signals to other parts 
inside CPU to execute the operations corresponds to the 
instruction 

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

Control

Unit

• Example: reading two values from the Register File

→Register File addresses are contained in the instruction

Fetch

PC = PC+4

DecodeExec
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Executing R-format instructions (ALU instructions)

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and 
rs2

store the result back into the Register File (into location rd)

Fetch

PC = PC+4

DecodeExec

Example: add x1, x2, x3
- Value of x2 and x3 are sent to ALU
- ALU execute the x2 + x3 operation
- Result is store into x1
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Executing R-format instructions (ALU instructions)

Fetch

PC = PC+4

DecodeExec

Draw connection between a and b to form the execution unit?

add x1, x2, x3

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and 
rs2

store the result back into the Register File (into location rd)
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Executing R-format instructions (ALU instructions)

Fetch

PC = PC+4

DecodeExec

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and 
rs2

store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite
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Executing Load and Store (Memory instructions)

❑ Load and store operations involves

read register operands 

Calculate address using 12-bit offset

- Use ALU, but sign-extend offset

store: read from the Register File, write to the Data Memory

load: read from the Data Memory, write to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Imm

Gen

MemWrite

MemRead

Draw necessary connections to form execution unit?
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Executing Load and Store (Memory instructions)

❑ Load and store operations involves

read register operands 

Calculate address using 12-bit offset

- Use ALU, but sign-extend offset

store: read from the Register File, write to the Data Memory

load: read from the Data Memory, write to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Imm

Gen

MemWrite

MemRead
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Combining ALU and Memory instructions

Note: multiplexors are added when connecting 
multiple inputs to one output 
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Executing Branch instruction (beq)

❑ Branch operations involves
read register operands

compare the operands (subtract, check zero ALU output)

compute the branch target address: adding the PC to the signed-

extended offset shifted left 1 bit.

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

zero

ALU control

Imm

gen

Add

4 Add

PC

Branch

target

address

(to branch 

control logic)

beq t0, t1, dest
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Full datapath for ALU, Memory, Branching instructions
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Designing a (very simple) ALU

❑ Input/output

Two data input: a, b

ALU control signals

Data out

Flags out

❑ Operations

and, or

add, subtract
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1-bit ALU with logic operation

❑ What do we have if

Operation = 0:

Operation = 1:
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1-bit full-adder
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1-bit ALU with AND, OR, ADD

❑ Operation = 00:

❑ Operation = 01:

❑ Operation = 10:
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How about 1-bit ALU with AND, OR, ADD, SUB?

❑ a-b = a + (-b) =  a + (2’s complement of b)

❑ For SUB operation

Operation =

Binvert = 

CarryIn =
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Adding other operations, such as NOR and SLT

❑ Ainvert is added

❑ For NOR operation: 𝑎 + 𝑏 = ത𝑎. ത𝑏

Ainvert = 

Binvert = 

Operation = 
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ALU control signals

❑ ALU operation:

Load/Store: F = add

Branch: F = subtract

R-type: F depends on opcode

❑ Operation (Function) is selected based on 4 control bits

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract
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The missing things: control signals

❑ Memory modules, register files, ALU, multiplexors 
require control signals to work.

ALUSrc, MemToReg, RegWrite, MemRead, MemWrite, Branch.

ALUOp (2 bits).

❑ Control signals are generated by:

“ALU control” unit: responsilble for the ALU control signals.

“Control” unit: read/write signals, multiplexors input selector, 
ALUOp to control “ALU control”.

Control signals generated by “Control” unit
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The missing things: control signals
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Datapath with Control unit and signals
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ALU control signals

❑ Set by “ALU control” unit.

❑ Based on 2-bit ALUOp and func3, func7 fields

ALU control signals
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ALU control signals

❑ How ALU control signals are set?

Not used

ALU 

control

Not used
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Datapath in operation for ALU instructions

#x2 = 0x20
#x3 = 0x30 
add x1, x2, x3
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Datapath in operation for lw instruction

lw x1, 100(x2)
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Datapath in operation for beq instruction

beq x1, x2, DEST
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Instruction Times (Critical Paths)

❑ What is the clock cycle time assuming negligible 
delays for muxes, control unit, sign extend, PC access, 
shift left 1, wires, setup and hold times except:

Instruction Fetch and Data Access (200 ps)

ALU operation and adders (200 ps)

Register File access (reads or writes) (100 ps)

Instruction 
Class

Instruction 
Fetch

Register 
Read

ALU 
Operation

Data 
Access

Register 
Write

Total

Load (lw)

Store (sw)

R-format (add, 
sub, and, or)

Branch (beq)
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Instruction Times (Critical Paths)

Instruction 
Class

Instruction 
Fetch

Register 
Read

ALU 
Operation

Data 
Access

Register 
Write

Total

Load (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, 
sub, and, or)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

❑ What is the clock cycle time assuming negligible 
delays for muxes, control unit, sign extend, PC access, 
shift left 1, wires, setup and hold times except:

Instruction Fetch and Data Access (200 ps)

ALU operation and adders (200 ps)

Register File access (reads or writes) (100 ps)
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Single Cycle Disadvantages & Advantages

❑ Uses the clock cycle inefficiently – the clock cycle must 

be timed to accommodate the slowest instruction

especially problematic for more complex instructions like 

floating point multiply

❑ May be wasteful of area since some functional units 

(e.g., adders) must be duplicated since they can not be 

shared during a clock cycle

but

❑ Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2
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How Can We Make The Computer Faster?

❑ Divide instruction cycles into smaller cycles

❑ Executing instructions in parallel

With only one CPU?

❑ Pipelining: 

Start fetching and executing the next instruction before the 
current one has completed

Overlapping execution
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Pipeline in real life
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A more serious example: laundry work

❑ Pipelined laundry boots performance up to 4 times

◼ With 4 loads

Tnormal = 4*2 = 8 hours

Tpipeline = 3.5 hours

◼ With n loads

Tnormal = n*2 hours

Tpipeline = (3+n)/2 hours

4 stages: washing, drying, ironing, folding

When n →  : Tnormal → 4*Tpipeline
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RISC-V Pipeline

❑ Five stages, one step per stage

IF: Instruction Fetch from Memory and Update PC

ID: Instruction Decode and Register Read

EX: Execute R-type or calculate memory address

MEM: Read/write the data from/to the Data Memory

WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Execution time for a single instruction is always 5 cycles, regardless 

of instruction operation
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Instruction pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Instructions in 

pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Start fetching and executing the 

next instruction before the current 

one has completed

More than one instruction are 

executed at a time

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WBlw

Cycle 7Cycle 6 Cycle 8

sw IF ID EX MEM WB

R-type IF ID EX MEM WB
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Pipeline performance

❑ All modern processors are pipelined for performance

Remember the performance equation:                                              
CPU time = CPI * CC * IC

❑ Under ideal conditions (balance) and with a large number 
of instructions:

A five-stage pipeline is nearly five times faster because the CC 
is nearly five times faster

improves throughput - total amount of work done in a given time

instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

❑ In reality, speedup is less because of imbalance and overhead

Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages
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Single Cycle versus Pipeline

lw IF ID EX MEM WB

Pipeline Implementation (CC = 200 ps):

IF ID EX MEM WBsw

IF ID EX MEM WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

❑ To complete an entire instruction in the pipelined case 

takes 1000 ps (as compared to 800 ps for the single 

cycle case).  Why ?

❑ How long does each take to complete 1,000,000 adds ?

400 ps



IT3030E, Fall 2024 43

Example with lw instructions

Single-cycle (Tc = 800ps)

Pipelined (Tc = 200ps)
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Exercise

Assume that the following instructions are executed in 

a 5-stage-pipelined RISC-V CPU. Draw the timeline of 

each instruction

IF ID EX MEM WB

add s0, s1, s2

lw t0, 0(t1)

sw t2, 0(t3)

bne s0, s1, EXIT
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Simulating the RISC-V pipeline

❑ Very handy tool: https://ripes.me/
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Simulating the RISC-V pipeline

❑ Support several CPU configurations

Note: be careful, data hazards happens with la/li pseudo-
instructions
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Pipeline Hazards

❑ Pipeline can lead us into troubles!!!

❑ Hazards: situations that prevent starting the next 
instruction in the next cycle

structural hazards: attempt to use the same resource by two 

different instructions at the same time

data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior 

instruction still in the pipeline

control hazards: attempt to make a decision about program 

control flow before the condition has been evaluated and the 

new PC target address calculated

- branch and jump instructions, exceptions

❑ In most cases, hazard can be solved simply by waiting

but we need better solutions to take advantages of pipeline
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Structure Hazards

❑ Conflict for use of a resource

❑ In RISC-V pipeline with a single memory

Load/store requires data access

Instruction fetch would have to stall for that cycle

- Would cause a pipeline “bubble”

❑ Hence, pipelined datapaths require separate 
instruction/data memories

Or separate instruction/data caches
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I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from 

memory

Reading instruction 

from memory

❑ Fix with separate instr and data memories (I$ and D$)
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How About Register File Access?

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix register file 

access hazard by 

doing reads in the 

second half of the 

cycle and writes in 

the first half

add $x1,

add $x2,$x1,

clock edge that controls 

register writing

clock edge that controls 

loading of pipeline state 

registers
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Data Hazards

❑An instruction depends on completion of data 
access by a previous instruction

add x19, x0, x1
sub x2, x19, x3

CPU must wait 

until data in x19 

becomes valid

stalls inserted by 

hardware (hazard 

detection) or software 

(compiler)
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Example 

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

❑ Dependencies backward in time cause hazards

add x30,

sub x4,x30,x5

and x6,x30,$7

xor $4,$30,$5

or  x8,x30,x9

❑ Read before write data hazard
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Example 

I

n

s

t

r.

O

r

d

e

r

lw  x1,4(x2)

sub x4,x1,x5

and x6,x1,x7

xor x4,x1,x5

or  x8,x1,x9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

❑ Dependencies backward in time cause hazards

❑ Load-use data hazard
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Solving hazard with Forwarding (aka Bypassing)

❑ Use result when it is computed

Don’t wait for it to be stored in a register

Requires extra connections in the datapath

❑ Forward from EX to EX (output to input)
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Exercise

❑ What is the value of t2 after the below code is executed 
in the following CPU

CPU without hazard detection or forwarding

CPU with hazard detection but no forwarding

CPU with forwarding

addi t0, zero, 100
addi t1, zero, 200
add t2, t0, t1
nop
nop
nop
nop
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Exercise

❑ CPU without hazard detection or forwarding

Incorrect value in t2 because of data hazard
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Exercise

❑ CPU with hazard detection but no forwarding

Correct value in t2 but with additional 2 stalls
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Exercise

❑ CPU with forwarding

Correct value in t2 with no additional stalls

Is hazard detection required in this case?
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Solving Load-Use Data Hazard

❑ Forward from MEM (output) to EX (input)

❑ Can’t always avoid stalls by forwarding

If value not computed when needed

Can’t forward backward in time!

One cycle stall is necessary → handle by software, or by 
hardware hazard detection
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Exercise

❑ What is the value of t2 after the below code is executed 
in the following CPU configuration

.data
M:.word 100
.text
auipc t1, 0x10000 #la t1, M
nop
nop
nop
nop
lw t0, 0(t1)
addi t2, t0, 100
nop
nop
nop
nop

Without hazard detection or 
forwarding

With forwarding but no hazard 
detection

With hazard detection but no 
forwarding

With both hazard detection and 
forwarding
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Exercise

❑ Without hazard detection or forwarding

t2 = 0x64

❑ With forwarding but no hazard detection

t2 = 0x64

❑ With hazard detection but no forwarding

t2 = 0xc8, with additional 2 stalls

❑ With both hazard detection and forwarding

t2 = 0xc8, with additional 1 stall



IT3030E, Fall 2024 62

Code scheduling to avoid stalls

❑ Reorder code to avoid use of load result in the next 
instruction

❑ C code:      A = B + E; 

C = B + F;

lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1,  t2

sw t3, 12(t0)

lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

stall

stall

lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2

sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

11 cycles13 cycles
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Control hazards

❑Branch determines flow of control

Fetching next instruction depends on branch outcome

Pipeline can’t always fetch correct instruction

- Still working on ID stage of branch

❑ In RISC-V pipeline

Need to compare registers and compute target 
early in the pipeline

Add hardware to do it in ID stage
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Branch instructions cause control hazards

❑ Dependencies backward in time cause hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg



IT3030E, Fall 2024 65

Solving control hazards

❑Delayed branch

❑Compute target earlier

Reduce number of stall cycles per branch instr.

Need to compare registers and compute target 
early in the pipeline.

Add hardware to do it in ID stage.

May cause additional stall in case of data hazards.

❑Branch prediction

Heuristically improve overall performance.

Complicated datapath with additional component.
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Stall on Branch (Delayed branch)

❑ Wait until branch outcome determined before fetching 
next instruction
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Branch prediction

❑ Predict outcome of branch

❑ Only stall if prediction is wrong

❑ In RISC-V pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay
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RISC-V with Predict Not Taken

Prediction 

correct

Prediction 

incorrect
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More-realistic branch prediction

❑ Static branch prediction

Based on typical branch behavior

Example: loop and if-statement branches

- Predict backward branches taken

- Predict forward branches not taken

❑ Dynamic branch prediction

Hardware measures actual branch behavior

- e.g., record recent history of each branch

Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history

Accuracy can reach >90% with SPectInt
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Designing RISC-V Pipelined Datapath

❑ Let’s see how pipelined datapath works 

All stages can work simultaneously.

Output from previous stage/cycle is input of next stage/cycle.

❑ And how it is constructed

Pipeline diagrams for load & store instructions.

Adding supports for handling hazards.
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Designing RISC-V pipelined datapath
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Pipeline registers

❑ Need registers between stages

To hold information produced in previous cycle
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IF stage
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ID stage 
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EX stage 
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MEM stage for the lw instruction
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WB for the lw instruction

Wrong write 

register
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Correction to support Load instruction

❑ Correct the write register



IT3030E, Fall 2024 79

Datapath in all five stages of a load instruction

❑ lw is the “longest” instruction, all stages are utilized.
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EX for the sw instruction
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EX for the sw instruction

2

1

4

3
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MEM for the sw instruction
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WB for the sw instruction
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Graphically representing pipelines

❑ Two ways to represent pipeline graphically

Multi-cycle pipeline diagram

- Represent the pipeline states through several clock cycles.

- Simpler, see the whole picture.

- Do not contain all the details of each stage.

Single cycle pipeline diagram

- Show the state of the entire datapath in a single clock cycle.

- Focus on the details but not the whole picture.
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Multi-cycle pipeline diagram

❑ Form showing resource usage
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Multi-cycle pipeline diagram

❑ Traditional form
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Single-cycle pipeline diagram

❑ Snapshot of pipeline status in a given cycle
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Example 

❑ See how the lw instruction is executed through 5 pipeline 
stages

The nop instructions are to flush the pipeline
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Simulating the RISC-V pipeline

❑ Single cycle pipeline diagram showing execution of lw
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Pipelined datapath with control signal (simplified)



IT3030E, Fall 2024 91

Pipelined Control

❑ Control signals derived from instruction

As in single-cycle implementation
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Pipelined datapath with Control

Rd is sent through the pipeline 

for use in apppropriate time in WB
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Pipeline implementation for solving hazard 

❑ What we have built sofa is for pipeline without hazard

❑ Now, adding more hardware to solve the hazard

Read before write data hazard

Load – use data hazard

Control hazard 
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Solving data hazard with forwarding
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Datapath with Forwarding

The datapath modified to resolve hazards via forwarding

sub x2, x1, x3add x12, x2, x5

Rd = x2

Rs1=x2

Condition for MEM to EX forwarding

Rs1 and Rs2 are 

also sent to EX

ALU – ALU forwarding
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Datapath with Forwarding

The datapath modified to resolve hazards via forwarding

sub x2, x1, x3add x12, x2, x5

Rd=x2

Rs2=x2

Condition for WB to EX forwarding

or x13, x6, x2

Rs1 and Rs2 are 

also sent to EX

Full path forwarding
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Read before write data hazard

❑ Require forwarding unit, the forwarding could be 

ALU – ALU forwarding

Full path forwarding (MEM to ALU forwarding)

No stall is required 
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Load-Use Data Hazard

Detect hazard 

and insert stall
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How to stall the pipeline

❑Force control values in ID/EX register to 0

EX, MEM and WB do nop (no-operation)

❑Prevent update of PC and IF/ID register

Using instruction is decoded again

Following instruction is fetched again

1-cycle stall allows MEM to read data for lw

- Can subsequently forward to EX stage
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Datapath with hazard detection

Note: the 0 input, PCWrite, IF/ID write are to stall the pipeline

Indicates a lw inst.

Rd of lw
Rs1

Rs2
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Load use data hazard

❑ Require detection unit to detect load-use hazard

❑ Must have one stall

❑ Require forwarding unit to forward from MEM stage to 
ALU stage
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Control hazard: early branch calculation +predict not-taken

❑ In case the branch is actually taken

fetched as if branch not taken
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Control hazard: early branch calculation +predict not-taken

❑ In case the branch is actually taken
and x12, x2, x5 replaced by bubble
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Summary

❑ ISA influences design of datapath and control.

❑All modern-day processors use pipelining.

❑Pipelining doesn’t help latency of a single 

instruction, it helps throughput of entire workload.

❑Potential speedup: a CPI of 1 and a fast CC.

❑Must detect and resolve hazards.

Structural, data, control.

Stalling negatively affects CPI (makes CPI worse than 

the ideal of 1).
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Summary

❑ Design of datapath

Single cycle non-pipelined CPU

Multi-cycle pipelined CPU

❑ Solving hazards

Structural hazards: I/D caches and separate register read/write

Data hazards:

- Hazard detection present/not present: stalls are added by software 
or hardware.

- Forwarding: no forwarding/partial forwarding/full forwarding.

Control hazard:

- Early target calculation or not.

- Delayed branch, static/dynamic prediction.


