
IT3030E, Fall 2024 1

Computer Architecture

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep
Department of Computer Engineering

School of Information and Communication Technology (SoICT)

Hanoi University of Science and Technology

E-mail: [trungnl, hungpn, hiephv]@soict.hust.edu.vn

IT3030E, Fall 2024 2

Chapter 5: The Processor

[with materials from Computer Organization and Design RISC-V, 2nd Edition,

Patterson & Hennessy, 2021, and M.J. Irwin’s presentation, PSU 2008]

IT3030E, Fall 2024 3

Review

Performance metric

CPU time = IC * CPI * CC

CPI: cycle per instruction

CC: clock cycle

IC: instruction count

How to improve?

• IC: ISA and compiler

• CC: hardware manufacturing

• CPI: CPU (logic) implementation

In this chapter

• Implementation of datapath

• How to improve CPI

IT3030E, Fall 2024 4

Introduction

❑ We will examine two CPU implementations

A simplified version, to see the main components inside a CPU.

A more realistic pipelined version, to see how CPI can be
improved (based on the pipeling technique).

❑ Simple subset which shows most aspects of RISC-V ISA.

Memory reference: lw, sw

Arithmetic and logical: add, sub, and, or

Branching: beq

❑ Other instructions can be added later easily (hopefully).

add, sub, and, or
lw
sw
beq

IT3030E, Fall 2024 5

What we have so far

❑ Instruction cycle

Fetch the instruction from memory using PC and update PC.

Decode the instruction.

Execute the instruction.

❑ The operands and instruction set.

❑ Memory model, code and data segments.

❑ The module for add, sub, and other operations.

Fetch

PC = PC+4

DecodeExec

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

write control

Memory

address

8 bits

data

232

locations

8/16/3232

write
control

read
control

Arithmetics and Logic
Unit

IT3030E, Fall 2024 6

Simple datapath overview (wo. multiplexor)

❑ CPU that can execute lw, sw, add, sub, and, or, beq.

❑ We’ll build this incrementally.

IT3030E, Fall 2024 7

Simple datapath overview (w. multiplexor and control)

❑ CPU that can execute lw, sw, add, sub, and, or, beq.

❑ We’ll build this incrementally.

❑ ..then refine it to improve performance.

IT3030E, Fall 2024 8

Fetching Instructions

❑ Fetching instruction involves

reading the instruction from the Instruction Memory

updating the PC value to be the address of the next instruction
in memory

Read

Address
Instruction

Instruction

Memory

Add

PC

4Fetch

PC = PC+4

DecodeExec

clock

Increment by

4 for next

instruction

IT3030E, Fall 2024 9

Decoding Instructions

❑ Decoding instruction involves
Sending the fetched instruction’s opcode and function field bits
to the control unit

The control unit send appropriate control signals to other parts
inside CPU to execute the operations corresponds to the
instruction

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

Control

Unit

• Example: reading two values from the Register File

→Register File addresses are contained in the instruction

Fetch

PC = PC+4

DecodeExec

IT3030E, Fall 2024 10

Executing R-format instructions (ALU instructions)

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and
rs2

store the result back into the Register File (into location rd)

Fetch

PC = PC+4

DecodeExec

Example: add x1, x2, x3
- Value of x2 and x3 are sent to ALU
- ALU execute the x2 + x3 operation
- Result is store into x1

IT3030E, Fall 2024 11

Executing R-format instructions (ALU instructions)

Fetch

PC = PC+4

DecodeExec

Draw connection between a and b to form the execution unit?

add x1, x2, x3

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and
rs2

store the result back into the Register File (into location rd)

IT3030E, Fall 2024 12

Executing R-format instructions (ALU instructions)

Fetch

PC = PC+4

DecodeExec

❑ R format operations (add, sub, and, or)

read two register operands rs1 and rs2

perform operation (opcode and funct7, funct3) on values in rs1 and
rs2

store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

IT3030E, Fall 2024 13

Executing Load and Store (Memory instructions)

❑ Load and store operations involves

read register operands

Calculate address using 12-bit offset

- Use ALU, but sign-extend offset

store: read from the Register File, write to the Data Memory

load: read from the Data Memory, write to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Imm

Gen

MemWrite

MemRead

Draw necessary connections to form execution unit?

IT3030E, Fall 2024 14

Executing Load and Store (Memory instructions)

❑ Load and store operations involves

read register operands

Calculate address using 12-bit offset

- Use ALU, but sign-extend offset

store: read from the Register File, write to the Data Memory

load: read from the Data Memory, write to the Register File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

overflow

zero

ALU controlRegWrite

Data

Memory

Address

Write Data

Read Data

Imm

Gen

MemWrite

MemRead

IT3030E, Fall 2024 15

Combining ALU and Memory instructions

Note: multiplexors are added when connecting
multiple inputs to one output

IT3030E, Fall 2024 16

Executing Branch instruction (beq)

❑ Branch operations involves
read register operands

compare the operands (subtract, check zero ALU output)

compute the branch target address: adding the PC to the signed-

extended offset shifted left 1 bit.

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

Data 1

Read

Data 2

ALU

zero

ALU control

Imm

gen

Add

4 Add

PC

Branch

target

address

(to branch

control logic)

beq t0, t1, dest

IT3030E, Fall 2024 17

Full datapath for ALU, Memory, Branching instructions

IT3030E, Fall 2024 18

Designing a (very simple) ALU

❑ Input/output

Two data input: a, b

ALU control signals

Data out

Flags out

❑ Operations

and, or

add, subtract

IT3030E, Fall 2024 19

1-bit ALU with logic operation

❑ What do we have if

Operation = 0:

Operation = 1:

IT3030E, Fall 2024 20

1-bit full-adder

IT3030E, Fall 2024 21

1-bit ALU with AND, OR, ADD

❑ Operation = 00:

❑ Operation = 01:

❑ Operation = 10:

IT3030E, Fall 2024 22

How about 1-bit ALU with AND, OR, ADD, SUB?

❑ a-b = a + (-b) = a + (2’s complement of b)

❑ For SUB operation

Operation =

Binvert =

CarryIn =

IT3030E, Fall 2024 23

Adding other operations, such as NOR and SLT

❑ Ainvert is added

❑ For NOR operation: 𝑎 + 𝑏 = ത𝑎. ത𝑏

Ainvert =

Binvert =

Operation =

IT3030E, Fall 2024 24

ALU control signals

❑ ALU operation:

Load/Store: F = add

Branch: F = subtract

R-type: F depends on opcode

❑ Operation (Function) is selected based on 4 control bits

ALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

IT3030E, Fall 2024 25

The missing things: control signals

❑ Memory modules, register files, ALU, multiplexors
require control signals to work.

ALUSrc, MemToReg, RegWrite, MemRead, MemWrite, Branch.

ALUOp (2 bits).

❑ Control signals are generated by:

“ALU control” unit: responsilble for the ALU control signals.

“Control” unit: read/write signals, multiplexors input selector,
ALUOp to control “ALU control”.

Control signals generated by “Control” unit

IT3030E, Fall 2024 26

The missing things: control signals

IT3030E, Fall 2024 27

Datapath with Control unit and signals

IT3030E, Fall 2024 28

ALU control signals

❑ Set by “ALU control” unit.

❑ Based on 2-bit ALUOp and func3, func7 fields

ALU control signals

IT3030E, Fall 2024 29

ALU control signals

❑ How ALU control signals are set?

Not used

ALU

control

Not used

IT3030E, Fall 2024 30

Datapath in operation for ALU instructions

#x2 = 0x20
#x3 = 0x30
add x1, x2, x3

IT3030E, Fall 2024 31

Datapath in operation for lw instruction

lw x1, 100(x2)

IT3030E, Fall 2024 32

Datapath in operation for beq instruction

beq x1, x2, DEST

IT3030E, Fall 2024 33

Instruction Times (Critical Paths)

❑ What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 1, wires, setup and hold times except:

Instruction Fetch and Data Access (200 ps)

ALU operation and adders (200 ps)

Register File access (reads or writes) (100 ps)

Instruction
Class

Instruction
Fetch

Register
Read

ALU
Operation

Data
Access

Register
Write

Total

Load (lw)

Store (sw)

R-format (add,
sub, and, or)

Branch (beq)

IT3030E, Fall 2024 34

Instruction Times (Critical Paths)

Instruction
Class

Instruction
Fetch

Register
Read

ALU
Operation

Data
Access

Register
Write

Total

Load (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add,
sub, and, or)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

❑ What is the clock cycle time assuming negligible
delays for muxes, control unit, sign extend, PC access,
shift left 1, wires, setup and hold times except:

Instruction Fetch and Data Access (200 ps)

ALU operation and adders (200 ps)

Register File access (reads or writes) (100 ps)

IT3030E, Fall 2024 35

Single Cycle Disadvantages & Advantages

❑ Uses the clock cycle inefficiently – the clock cycle must

be timed to accommodate the slowest instruction

especially problematic for more complex instructions like

floating point multiply

❑ May be wasteful of area since some functional units

(e.g., adders) must be duplicated since they can not be

shared during a clock cycle

but

❑ Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

IT3030E, Fall 2024 36

How Can We Make The Computer Faster?

❑ Divide instruction cycles into smaller cycles

❑ Executing instructions in parallel

With only one CPU?

❑ Pipelining:

Start fetching and executing the next instruction before the
current one has completed

Overlapping execution

IT3030E, Fall 2024 37

Pipeline in real life

IT3030E, Fall 2024 38

A more serious example: laundry work

❑ Pipelined laundry boots performance up to 4 times

◼ With 4 loads

Tnormal = 4*2 = 8 hours

Tpipeline = 3.5 hours

◼ With n loads

Tnormal = n*2 hours

Tpipeline = (3+n)/2 hours

4 stages: washing, drying, ironing, folding

When n →  : Tnormal → 4*Tpipeline

IT3030E, Fall 2024 39

RISC-V Pipeline

❑ Five stages, one step per stage

IF: Instruction Fetch from Memory and Update PC

ID: Instruction Decode and Register Read

EX: Execute R-type or calculate memory address

MEM: Read/write the data from/to the Data Memory

WB: Write the result data into the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Execution time for a single instruction is always 5 cycles, regardless

of instruction operation

IT3030E, Fall 2024 40

Instruction pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Instructions in

pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WB

Start fetching and executing the

next instruction before the current

one has completed

More than one instruction are

executed at a time

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IF ID EX MEM WBlw

Cycle 7Cycle 6 Cycle 8

sw IF ID EX MEM WB

R-type IF ID EX MEM WB

IT3030E, Fall 2024 41

Pipeline performance

❑ All modern processors are pipelined for performance

Remember the performance equation:
CPU time = CPI * CC * IC

❑ Under ideal conditions (balance) and with a large number
of instructions:

A five-stage pipeline is nearly five times faster because the CC
is nearly five times faster

improves throughput - total amount of work done in a given time

instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

❑ In reality, speedup is less because of imbalance and overhead

Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

IT3030E, Fall 2024 42

Single Cycle versus Pipeline

lw IF ID EX MEM WB

Pipeline Implementation (CC = 200 ps):

IF ID EX MEM WBsw

IF ID EX MEM WBR-type

Clk

Single Cycle Implementation (CC = 800 ps):

lw sw Waste

Cycle 1 Cycle 2

❑ To complete an entire instruction in the pipelined case

takes 1000 ps (as compared to 800 ps for the single

cycle case). Why ?

❑ How long does each take to complete 1,000,000 adds ?

400 ps

IT3030E, Fall 2024 43

Example with lw instructions

Single-cycle (Tc = 800ps)

Pipelined (Tc = 200ps)

IT3030E, Fall 2024 44

Exercise

Assume that the following instructions are executed in

a 5-stage-pipelined RISC-V CPU. Draw the timeline of

each instruction

IF ID EX MEM WB

add s0, s1, s2

lw t0, 0(t1)

sw t2, 0(t3)

bne s0, s1, EXIT

IT3030E, Fall 2024 45

Simulating the RISC-V pipeline

❑ Very handy tool: https://ripes.me/

IT3030E, Fall 2024 46

Simulating the RISC-V pipeline

❑ Support several CPU configurations

Note: be careful, data hazards happens with la/li pseudo-
instructions

IT3030E, Fall 2024 47

Pipeline Hazards

❑ Pipeline can lead us into troubles!!!

❑ Hazards: situations that prevent starting the next
instruction in the next cycle

structural hazards: attempt to use the same resource by two

different instructions at the same time

data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior

instruction still in the pipeline

control hazards: attempt to make a decision about program

control flow before the condition has been evaluated and the

new PC target address calculated

- branch and jump instructions, exceptions

❑ In most cases, hazard can be solved simply by waiting

but we need better solutions to take advantages of pipeline

IT3030E, Fall 2024 48

Structure Hazards

❑ Conflict for use of a resource

❑ In RISC-V pipeline with a single memory

Load/store requires data access

Instruction fetch would have to stall for that cycle

- Would cause a pipeline “bubble”

❑ Hence, pipelined datapaths require separate
instruction/data memories

Or separate instruction/data caches

IT3030E, Fall 2024 49

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from

memory

Reading instruction

from memory

❑ Fix with separate instr and data memories (I$ and D$)

IT3030E, Fall 2024 50

How About Register File Access?

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

Fix register file

access hazard by

doing reads in the

second half of the

cycle and writes in

the first half

add $x1,

add $x2,$x1,

clock edge that controls

register writing

clock edge that controls

loading of pipeline state

registers

IT3030E, Fall 2024 51

Data Hazards

❑An instruction depends on completion of data
access by a previous instruction

add x19, x0, x1
sub x2, x19, x3

CPU must wait

until data in x19

becomes valid

stalls inserted by

hardware (hazard

detection) or software

(compiler)

IT3030E, Fall 2024 52

Example

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

❑ Dependencies backward in time cause hazards

add x30,

sub x4,x30,x5

and x6,x30,$7

xor $4,$30,$5

or x8,x30,x9

❑ Read before write data hazard

IT3030E, Fall 2024 53

Example

I

n

s

t

r.

O

r

d

e

r

lw x1,4(x2)

sub x4,x1,x5

and x6,x1,x7

xor x4,x1,x5

or x8,x1,x9
A

L
UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

❑ Dependencies backward in time cause hazards

❑ Load-use data hazard

IT3030E, Fall 2024 54

Solving hazard with Forwarding (aka Bypassing)

❑ Use result when it is computed

Don’t wait for it to be stored in a register

Requires extra connections in the datapath

❑ Forward from EX to EX (output to input)

IT3030E, Fall 2024 55

Exercise

❑ What is the value of t2 after the below code is executed
in the following CPU

CPU without hazard detection or forwarding

CPU with hazard detection but no forwarding

CPU with forwarding

addi t0, zero, 100
addi t1, zero, 200
add t2, t0, t1
nop
nop
nop
nop

IT3030E, Fall 2024 56

Exercise

❑ CPU without hazard detection or forwarding

Incorrect value in t2 because of data hazard

IT3030E, Fall 2024 57

Exercise

❑ CPU with hazard detection but no forwarding

Correct value in t2 but with additional 2 stalls

IT3030E, Fall 2024 58

Exercise

❑ CPU with forwarding

Correct value in t2 with no additional stalls

Is hazard detection required in this case?

IT3030E, Fall 2024 59

Solving Load-Use Data Hazard

❑ Forward from MEM (output) to EX (input)

❑ Can’t always avoid stalls by forwarding

If value not computed when needed

Can’t forward backward in time!

One cycle stall is necessary → handle by software, or by
hardware hazard detection

IT3030E, Fall 2024 60

Exercise

❑ What is the value of t2 after the below code is executed
in the following CPU configuration

.data
M:.word 100
.text
auipc t1, 0x10000 #la t1, M
nop
nop
nop
nop
lw t0, 0(t1)
addi t2, t0, 100
nop
nop
nop
nop

Without hazard detection or
forwarding

With forwarding but no hazard
detection

With hazard detection but no
forwarding

With both hazard detection and
forwarding

IT3030E, Fall 2024 61

Exercise

❑ Without hazard detection or forwarding

t2 = 0x64

❑ With forwarding but no hazard detection

t2 = 0x64

❑ With hazard detection but no forwarding

t2 = 0xc8, with additional 2 stalls

❑ With both hazard detection and forwarding

t2 = 0xc8, with additional 1 stall

IT3030E, Fall 2024 62

Code scheduling to avoid stalls

❑ Reorder code to avoid use of load result in the next
instruction

❑ C code: A = B + E;

C = B + F;

lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1, t2

sw t3, 12(t0)

lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

stall

stall

lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2

sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

11 cycles13 cycles

IT3030E, Fall 2024 63

Control hazards

❑Branch determines flow of control

Fetching next instruction depends on branch outcome

Pipeline can’t always fetch correct instruction

- Still working on ID stage of branch

❑ In RISC-V pipeline

Need to compare registers and compute target
early in the pipeline

Add hardware to do it in ID stage

IT3030E, Fall 2024 64

Branch instructions cause control hazards

❑ Dependencies backward in time cause hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

A
L

UIM Reg DM Reg

IT3030E, Fall 2024 65

Solving control hazards

❑Delayed branch

❑Compute target earlier

Reduce number of stall cycles per branch instr.

Need to compare registers and compute target
early in the pipeline.

Add hardware to do it in ID stage.

May cause additional stall in case of data hazards.

❑Branch prediction

Heuristically improve overall performance.

Complicated datapath with additional component.

IT3030E, Fall 2024 66

Stall on Branch (Delayed branch)

❑ Wait until branch outcome determined before fetching
next instruction

IT3030E, Fall 2024 67

Branch prediction

❑ Predict outcome of branch

❑ Only stall if prediction is wrong

❑ In RISC-V pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay

IT3030E, Fall 2024 68

RISC-V with Predict Not Taken

Prediction

correct

Prediction

incorrect

IT3030E, Fall 2024 69

More-realistic branch prediction

❑ Static branch prediction

Based on typical branch behavior

Example: loop and if-statement branches

- Predict backward branches taken

- Predict forward branches not taken

❑ Dynamic branch prediction

Hardware measures actual branch behavior

- e.g., record recent history of each branch

Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history

Accuracy can reach >90% with SPectInt

IT3030E, Fall 2024 70

Designing RISC-V Pipelined Datapath

❑ Let’s see how pipelined datapath works

All stages can work simultaneously.

Output from previous stage/cycle is input of next stage/cycle.

❑ And how it is constructed

Pipeline diagrams for load & store instructions.

Adding supports for handling hazards.

IT3030E, Fall 2024 71

Designing RISC-V pipelined datapath

IT3030E, Fall 2024 72

Pipeline registers

❑ Need registers between stages

To hold information produced in previous cycle

IT3030E, Fall 2024 73

IF stage

IT3030E, Fall 2024 74

ID stage

IT3030E, Fall 2024 75

EX stage

IT3030E, Fall 2024 76

MEM stage for the lw instruction

IT3030E, Fall 2024 77

WB for the lw instruction

Wrong write

register

IT3030E, Fall 2024 78

Correction to support Load instruction

❑ Correct the write register

IT3030E, Fall 2024 79

Datapath in all five stages of a load instruction

❑ lw is the “longest” instruction, all stages are utilized.

IT3030E, Fall 2024 80

EX for the sw instruction

IT3030E, Fall 2024 81

EX for the sw instruction

2

1

4

3

IT3030E, Fall 2024 82

MEM for the sw instruction

IT3030E, Fall 2024 83

WB for the sw instruction

IT3030E, Fall 2024 84

Graphically representing pipelines

❑ Two ways to represent pipeline graphically

Multi-cycle pipeline diagram

- Represent the pipeline states through several clock cycles.

- Simpler, see the whole picture.

- Do not contain all the details of each stage.

Single cycle pipeline diagram

- Show the state of the entire datapath in a single clock cycle.

- Focus on the details but not the whole picture.

IT3030E, Fall 2024 85

Multi-cycle pipeline diagram

❑ Form showing resource usage

IT3030E, Fall 2024 86

Multi-cycle pipeline diagram

❑ Traditional form

IT3030E, Fall 2024 87

Single-cycle pipeline diagram

❑ Snapshot of pipeline status in a given cycle

IT3030E, Fall 2024 88

Example

❑ See how the lw instruction is executed through 5 pipeline
stages

The nop instructions are to flush the pipeline

IT3030E, Fall 2024 89

Simulating the RISC-V pipeline

❑ Single cycle pipeline diagram showing execution of lw

IT3030E, Fall 2024 90

Pipelined datapath with control signal (simplified)

IT3030E, Fall 2024 91

Pipelined Control

❑ Control signals derived from instruction

As in single-cycle implementation

IT3030E, Fall 2024 92

Pipelined datapath with Control

Rd is sent through the pipeline

for use in apppropriate time in WB

IT3030E, Fall 2024 93

Pipeline implementation for solving hazard

❑ What we have built sofa is for pipeline without hazard

❑ Now, adding more hardware to solve the hazard

Read before write data hazard

Load – use data hazard

Control hazard

IT3030E, Fall 2024 94

Solving data hazard with forwarding

IT3030E, Fall 2024 97

Datapath with Forwarding

The datapath modified to resolve hazards via forwarding

sub x2, x1, x3add x12, x2, x5

Rd = x2

Rs1=x2

Condition for MEM to EX forwarding

Rs1 and Rs2 are

also sent to EX

ALU – ALU forwarding

IT3030E, Fall 2024 98

Datapath with Forwarding

The datapath modified to resolve hazards via forwarding

sub x2, x1, x3add x12, x2, x5

Rd=x2

Rs2=x2

Condition for WB to EX forwarding

or x13, x6, x2

Rs1 and Rs2 are

also sent to EX

Full path forwarding

IT3030E, Fall 2024 99

Read before write data hazard

❑ Require forwarding unit, the forwarding could be

ALU – ALU forwarding

Full path forwarding (MEM to ALU forwarding)

No stall is required

IT3030E, Fall 2024 100

Load-Use Data Hazard

Detect hazard

and insert stall

IT3030E, Fall 2024 101

How to stall the pipeline

❑Force control values in ID/EX register to 0

EX, MEM and WB do nop (no-operation)

❑Prevent update of PC and IF/ID register

Using instruction is decoded again

Following instruction is fetched again

1-cycle stall allows MEM to read data for lw

- Can subsequently forward to EX stage

IT3030E, Fall 2024 102

Datapath with hazard detection

Note: the 0 input, PCWrite, IF/ID write are to stall the pipeline

Indicates a lw inst.

Rd of lw
Rs1

Rs2

IT3030E, Fall 2024 103

Load use data hazard

❑ Require detection unit to detect load-use hazard

❑ Must have one stall

❑ Require forwarding unit to forward from MEM stage to
ALU stage

IT3030E, Fall 2024 104

Control hazard: early branch calculation +predict not-taken

❑ In case the branch is actually taken

fetched as if branch not taken

IT3030E, Fall 2024 105

Control hazard: early branch calculation +predict not-taken

❑ In case the branch is actually taken
and x12, x2, x5 replaced by bubble

IT3030E, Fall 2024 107

Summary

❑ ISA influences design of datapath and control.

❑All modern-day processors use pipelining.

❑Pipelining doesn’t help latency of a single

instruction, it helps throughput of entire workload.

❑Potential speedup: a CPI of 1 and a fast CC.

❑Must detect and resolve hazards.

Structural, data, control.

Stalling negatively affects CPI (makes CPI worse than

the ideal of 1).

IT3030E, Fall 2024 108

Summary

❑ Design of datapath

Single cycle non-pipelined CPU

Multi-cycle pipelined CPU

❑ Solving hazards

Structural hazards: I/D caches and separate register read/write

Data hazards:

- Hazard detection present/not present: stalls are added by software
or hardware.

- Forwarding: no forwarding/partial forwarding/full forwarding.

Control hazard:

- Early target calculation or not.

- Delayed branch, static/dynamic prediction.

