
IT3030E, Fall 2024 1

Computer Architecture

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep
Department of Computer Engineering

School of Information and Communication Technology (SoICT)

Hanoi University of Science and Technology

E-mail: [trungnl, hungpn, hiephv]@soict.hust.edu.vn

IT3030E, Fall 2024 2

Chapter 4: Arithmetic for Computers

[with materials from COD, RISC-V 2nd Edition, Patterson & Hennessy 2021,

and M.J. Irwin’s presentation, PSU 2008,

The RISC-V Instruction Set Manual, Volume I, ver. 2.2]

IT3030E, Fall 2024 3

What are stored inside computer?

❑ Data, of course!

l Audio, video, image, drawings,…

l Documents, personal information,…

l Finance record, corporate business data,…

l …

❑ Complex data is constructed from basic data types.

l Integers

l Real numbers (Floating point)

l Symbols (Characters)

❑ All are represented as binary numbers.

IT3030E, Fall 2024 4

Content

❑ (Super) Basics of logic design

❑ Integer representation

❑ Integer arithmetic (inside computer)

❑ Floating point number representation and arithmetic

IT3030E, Fall 2024 5

Unsigned Binary Integers

❑ Using n-bit binary number to represent non-negative
integer

0

0

1

1

2n

2n

1n

1n

012n1n

2x2x2x2x

xxxxx

++++=

=

−

−

−

−

−−



...

❑ Range: 0 to +2n – 1

❑ Example

0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

❑ Data range using 32 bits

0 to 232-1 = 4,294,967,295

IT3030E, Fall 2024 6

Eg: 32 bit Unsigned Binary Integers

Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100 232-4

0xFFFFFFFD 1…1101 232-3

0xFFFFFFFE 1…1110 232-2

0xFFFFFFFF 1…1111 232-1

IT3030E, Fall 2024 7

Exercise

❑ Convert from decimal to 32-bit binary integers

25 = 0000 0000 0000 0000 0000 0000 0001 1001

125 = 0000 0000 0000 0000 0000 0000 0111 1101

255 = 0000 0000 0000 0000 0000 0000 1111 1111

❑ Convert 32-bit binary integers to decimal

0000 0000 0000 0000 0000 0000 1100 1111 = 207

0000 0000 0000 0000 0000 0001 0011 0011 = 307

IT3030E, Fall 2024 8

Signed binary integers

❑ Using n-bit binary number to represent integer, including
negative values

0

0

1

1

2n

2n

1n

1n

012n1n

2x2x2x2x

xxxxx

++++−=

=

−

−

−

−

−−



...

❑ Range: –2n – 1 to +2n – 1 – 1

❑ The left most bit (msb) indicates the sign of the
number

❑ Example

1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

❑ Using 32 bits

–2,147,483,648 to +2,147,483,647

IT3030E, Fall 2024 9

Signed integer negation

❑ Given 𝑥 = 𝑥𝑛 − 1𝑥𝑛 − 2 …
𝑥1𝑥0, how to calculate −𝑥?

❑ Let ҧ𝑥 = 1′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑥

ҧ𝑥 = 1111…112 − 𝑥

(1 → 0, 0 → 1)

Then

ҧ𝑥 + 𝑥 = 1111…112 = −1

➔ ҧ𝑥 + 1 = −𝑥

❑ The computer uses 2’s complement form to represent a
negative number

❑ Example: find binary representation of -2

+2 = 0000 0000 … 00102

–2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

IT3030E, Fall 2024 11

Exercise

❑ Find 16 bit signed integer representation of

16 = 0000 0000 0001 0000

-16 = 1111 1111 1111 0000

100 = 0000 0000 0110 0100

-100 = 1111 1111 1001 1100

IT3030E, Fall 2024 12

Sign extension

❑ Given n-bit integer 𝑥 = 𝑥𝑛 − 1𝑥𝑛 − 2 …
𝑥1𝑥0

❑ Find corresponding m-bit representation (m > n) with the
same numeric value

𝑥 = 𝑥𝑚 − 1𝑥𝑚 − 2 …
𝑥1𝑥0

❑→ Replicate the sign bit to the left

❑Examples: 8-bit to 16-bit

+2: 0000 0010 => 0000 0000 0000 0010

–2: 1111 1110 => 1111 1111 1111 1110

IT3030E, Fall 2024 13

Instruction to work with sign/unsigned

❑ lb/lbu, lh/lhu

❑ blt/bltu, bge/bgeu

❑ slt/sltu, slti/sltiu

❑ div/divu, rem/remu

IT3030E, Fall 2024 14

Example

❑ What is the output of the following program?

❑ What if the blt instruction is replaced by bltu?

li t0, 20
li t1, -20
bltu t1, t0, else
li a0, 1
j print

else:
li a0, 0

print:
li a7, 1
ecall

IT3030E, Fall 2024 15

Example

❑ What are the decimal values of s0, s1, s2, s3?

.data
x: .byte 20
y: .byte -20

.text
la t0, x
la t1, y
lb s0, 0(t0)
lbu s1, 0(t0)
lb s2, 0(t1)
lbu s3, 0(t1)

IT3030E, Fall 2024 16

Addition and subtraction

❑ Addition

l Similar to what you do to add two numbers manually

l Digits are added bit by bit from right to left

l Carries passed to the next digit to the left

❑ Subtraction

l Negate the second operand then add to the first operand

+

IT3030E, Fall 2024 17

Carryout and Overflow

Operation Operand A Operand B Result indicating

overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0

A - B ≥ 0 < 0 < 0

A - B < 0 ≥ 0 ≥ 0

❑ Carryout: adding or substracting n-bit binary numbers result in
carryout to or borrow from bit n+1.

❑ Overflow: adding or subtracting n-bit signed integers result in a value
that cannot be represented by a n-bit signed integer.

❑ When adding operands with different signs or when subtracting
operands with the same sign, overflow can never occur

IT3030E, Fall 2024 18

Overflow consequences

❑ Incorrect results: the result may

l wrap around (unsigned numbers), or

l change sign (signed numbers)

❑Hardware exception:

l In Intel x86: the overflow flag (a specific bit in a global
flag register) is set when overflow occurs, allowing
software to detect it.

l In RISC-V: hardware does not care about the
overflow → must be handled explicitly by software

IT3030E, Fall 2024 19

Examples

❑ All numbers are 8-bit signed integer

12 + 8 =

122 + 8 =

122 + 80 =

122 - 80 =

IT3030E, Fall 2024 20

Arithmetic from hardware viewpoint

❑How does computer implement the addition by
hardware?

l Answer: the computer implements logic circuits

l Logic circuits are built using logic gates: AND, OR,
NOT

l Supported theory: Boolean algebra

IT3030E, Fall 2024 21

Basics of logic design (Appendix A)

❑ Boolean logic: logic variable and operators

❑ Logic variable: values of 1 (TRUE) or 0 (FALSE)

❑ Basic operators: AND, OR, NOT

l A AND B :

l A OR B :

l NOT A :

l Order: NOT > AND > OR

❑ Additional operators: NAND, NOR, XOR

l A NAND B:

l A NOR B :

l A XOR B:

A·B

BA+

BABABA •+•=

A·B hay AB

A

A+B

IT3030E, Fall 2024 22

Truth tables

A B
A AND B
A•B

0 0 0

0 1 0

1 0 0

1 1 1

A B
A OR B
A + B

0 0 0

0 1 1

1 0 1

1 1 1

A B
A NAND B

𝐴. 𝐵

0 0 1

0 1 1

1 0 1

1 1 0

A B
A NOR B

𝐴 + 𝐵

0 0 1

0 1 0

1 0 0

1 1 0

A
NOT A

ҧ𝐴

0 1

1 0

A B
A XOR B

A  B

0 0 0

0 1 1

1 0 1

1 1 0

Unary operator NOT

IT3030E, Fall 2024 23

Logic gates

IT3030E, Fall 2024 24

Laws of Boolean algebra

A • B = B • A

A • (B + C) = (A • B) + (A • C)

1 • A = A

A • A = 0

0 • A = 0

A • A = A

A • (B • C) = (A • B) • C

A • B = A + B (DeMorgan’s law)

A + B = B + A

A + (B • C) = (A + B) • (A + C)

0 + A = A

A + A = 1

1 + A = 1

A + A = A

A + (B + C) = (A + B) + C

A + B = A • B (DeMorgan’s law)

24

IT3030E, Fall 2024 25

Example: multiplexor

❑Depending on S, output C is equal to one of the
two inputs A, B

❑Explain how this circuit works?

IT3030E, Fall 2024 26

Truth table

A

B

S

C

MUX 2-1

S C

0 A

1 B

AB
S 00 01 11 10

0 1 1

1 1 1

S B A C

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Multiplexor explaination

26

𝐶 = 𝐴 ҧ𝑆 + BS

IT3030E, Fall 2024 28

Adder implementation

❑ 1-bit full adder

❑ 𝑆 = 𝐶𝑖𝑛⨁ 𝐴⨁𝐵

❑ 𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

A

B

1-bit

ALU
S

Cin

Cout

Inputs Outputs

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

IT3030E, Fall 2024 29

Adder implementation

❑ N-bit ripple-carry adder

➔ Performance is low

A0

B0

1-bit

ALU
result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
result2

CarryIn2

CarryOut2

A3

B3

1-bit

ALU
result3

CarryIn3

CarryOut3

Performance depends

on data length

IT3030E, Fall 2024 30

Making addition faster: infinite hardware

❑ Parallelize the adder with the cost of hardware

❑ Given the addition:
𝑎𝑛 − 1𝑎𝑛 − 2 …

𝑎1𝑎0 + 𝑏𝑛
− 1𝑏𝑛 − 2 …

𝑏1𝑏0

❑ Let 𝑐𝑖 is the carry at bit 𝑖
c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)
c1 = (b0 . C0) + (a0 . c0) + (a0 . b0)

❑ Then

❑ We can hardwire the adder circuit to have super-fast
performance. Problem: too many hardware gates!

c2 = (a1 . a0 . b0)

+ (a1 . a0 . c0)

+ (a1 . b0 . c0)

+ (b1 . a0 . b0)

+ (b1 . a0 . c0)

+ (b1 . b0 . c0)

+ (a1 . b1)

𝑐𝑛 − 1 will be

extremely complicated

Find c2 from a0, b0, a1, b1?

IT3030E, Fall 2024 31

Making addition faster: Carry Lookahead

❑ Video demo:
https://www.youtube.com/watch?v=yj6wo5SCObY

❑ Approach

l Make hardwired 4 bit adder → fast and simple enough

l Develop a carry lookahead unit to calculate the carry bit before
finishing the addition

❑ At bit 𝑖

❑ Denote

❑ Then

https://www.youtube.com/watch?v=yj6wo5SCObY

IT3030E, Fall 2024 32

Carry lookahead

❑ With 4-bit adder

➔All carry bits can be calculated after 3 gate delay

➔All result bits can be calculated after maximum of 4 gate
delay

➔How to implement bigger adder?

IT3030E, Fall 2024 33

Carry lookahead

❑ For 16-bit adder → fast C1, C2, C3, C4 is needed

C0 = 0

C1

C2

C3

C4

IT3030E, Fall 2024 34

Carry lookahead

❑ Denote

❑ Then big-carry bits can be calculated fast

IT3030E, Fall 2024 35

16-bit Adder

IT3030E, Fall 2024 40

Multiply

❑ Binary multiplication is just a bunch of right shifts and
adds

multiplicand

multiplier

partial

product

array

double precision product

n

2n

n
can be formed in parallel

and added in parallel for

faster multiplication

n-bit multiplicand and multiplier → 2n-bit product

IT3030E, Fall 2024 41

Example

How to do this in hardware?

IT3030E, Fall 2024 44

Add and Right Shift Multiplier

Start

C = 0; A = 0

M = Multiplicand

Q = Multiplier

counter = n

Q0 = 1 C, A = A + M

Shift right C, A, Q

counter = counter - 1

counter = 0

End

Y

N

Y

N

IT3030E, Fall 2024 45

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add

shift

right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

add 0 0 1 1 0 0 1 0

add 0 1 1 1 1 0 0 1

add 0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1

0 0 0 1 1 1 1 0

0 0 1 1 1 1 0 0

= 30

6 x 5 = ?

4-bit integer

LSB=1 → add multiplicand

shift right

LSB=0 → no change

shift right

LSB=1 → add multiplicand

shift right

LSB=0 → no change

shift right

IT3030E, Fall 2024 46

Fast multiplier – Design for Moore

❑ Why is this fast?

IT3030E, Fall 2024 47

Fast multiplier – Design for Moore

❑ How fast is this?

❑ Note: the size of addition circuits

IT3030E, Fall 2024 48

RISC-V Multiply Instruction (RV32M extension)

❑ Multiply instructions: mul, mulh mulhu, mulhsu

mul t1, s0, s1 #set t1 to lower 32 bits

of s0 * s1

mulh t1, s0, s1 #set t1 to upper 32 bits

of s0 * s1

mulhu t1, s0, s1 #set t1 to upper 32 bits of

s0 * s1(unsigned multiplication)

mulhsu t1, s0, s1 #set t1 to upper 32 bits

of s0 * s1, where s0 is signed and s1 is

unsigned

IT3030E, Fall 2024 49

Division

❑ Division is just a bunch of quotient digit guesses and left
shifts and subtracts

dividend = quotient x divisor + remainder

dividend

divisor

partial

remainder

array

quotientn

n

remainder
n

0 0 0

0

0

0

IT3030E, Fall 2024 51

Left Shift and Subtract Division Hardware

divisor

32-bit ALU

quotient Control

subtract

shift

left

dividend

remainder

0 0 1 0 = 2

0 0 0 0 0 1 1 0 = 6

0 0 0 0 1 1 0 0
sub 1 1 1 0 1 1 0 0 rem<0, so quotient bit = 0

0 0 0 0 1 1 0 0 and restore remainder
0 0 0 1 1 0 0 0

sub 1 1 1 1 1 0 0 0 rem<0, so quotient bit = 0
0 0 0 1 1 0 0 0 and restore remainder
0 0 1 1 0 0 0 0

sub 0 0 0 1 0 0 0 1 rem0, so quotient bit = 1

0 0 1 0 0 0 1 0
sub 0 0 0 0 0 0 1 1 rem0, so quotient bit = 1

all bits of divident are processed
Result: remainder 0, quotient 3

IT3030E, Fall 2024 52

RISC-V Divide Instruction (RV32M extension)

❑ Instructions:

div t1, t2, t3 #t1 = t2/t3 (signed division)

divu t1, t2, t3 #t1 = t2/t3 (unsigned division)

rem t1, t2, t3 #t1 = remainder of t2/t3

remu t1, t2, t3 #t1 = remainder of t2/t3

(unsigned)

❑ As with multiply, divide ignores overflow so software
must determine if the quotient is too large.

❑ Software must also check the divisor to avoid
division by 0.

IT3030E, Fall 2024 53

Signed integer multiplication and division

❑ Reuse unsigned multiplication then fix product sign later

❑ Multiplication

l Multiplicand and multiplier are of the same sign: keep product

l Multiplicand and multiplier are of different sign: negate product

❑ Division:

l Dividend and divisor of the same sign:

- Keep quotient

- Keep/negate remainder so it is of the same sign with dividend

l Dividend and divisor of different sign:

- Negate quotient

- Keep/negate remainder so it is of the same sign with dividend

IT3030E, Fall 2024 54

Example

❑ Write a RISC-V program

l Reads 2 integers a and b from console

l Print out the two values: (a / b) and (a % b) to console

IT3030E, Fall 2024 55

Exercise

❑ Write a program that

l Reads two integers a and b from console.

l Find and print out the greatest common divisor of a and b.

l Find and print out the least common multiplier of a and b.

IT3030E, Fall 2024 56

Representing Big (and Small) Numbers

❑ Encoding non-integer value?

Earth mass: (5.9722±0.0006)×1024 (kg)

Weight of an amu (atomic mass unit, 1/12 mass of C12)

0.0000000000000000000000000166 or 1.6 x 10-27 (kg)

PI number

PI = 3.14159….

❑ Problem: how to represent the above numbers?

➔We need reals or floating-point numbers!

➔Floating point numbers in decimal:

➔ 1000

➔ 1 x 103

➔ 0.1 x 104

IT3030E, Fall 2024 57

Floating point number

❑ In decimal system

2013.1228 = 201.31228 * 10

= 20.131228 * 102

= 2.0131228 * 103

= 20131228 * 10-4

❑ What is the “standard” form?

2.0131228 * 103 = 2.0131228E+03

❑ In binary X = 1.xxxxx * 2yyyy

❑ Sign, mantissa, and exponent need to be represented

mantissa exponent

IT3030E, Fall 2024 58

Floating point number

❑ Defined by the IEEE 754-1985 standard

❑ Single precision: 32 bit

❑ Double precision: 64 bit

❑ Correspond to float and double in C

❑ Single precision floating point representation

(-1)sign x 1.F x 2E-bias

Fit everything in 32 bits

Bias = 127 (with single precision)

s E (exponent) F (fraction)

1 sign bit 8 bits 23 bits

IT3030E, Fall 2024 59

Examples

❑ Ex1: convert X into decimal value

X = 1100 0001 0101 0110 0000 0000 0000 0000

sign = 1 → X is negative

E = 1000 0010 = 130

F = 10101100...00

→ X = (-1)1 x 1.101011000..00 x 2130-127

= -1.101011 x 23 = -1101.011

= -13.375

IT3030E, Fall 2024 60

Example

❑ Ex2: find decimal value of X

X = 0011 1111 1000 0000 0000 0000 0000 0000

sign = 0

E = 0111 1111 = 127

F = 000…0000 (23 bit 0)

X = (-1)0 x 1.00…000 x 2127-127 = 1.0

IT3030E, Fall 2024 61

Example

❑ Ex3: find binary representation of X = 9.6875 in IEEE 754
single precision

Converting X to plain binary

910 = 10012

0.6875 x 2 = 1.375 → get bit 1

0.375 x 2 = 0.75 → get bit 0

0.75 x 2 = 1.5 → get bit 1

0.5 x = 1.0 → get bit 1

➔ 9.687510 = 1001.10112

IT3030E, Fall 2024 62

Example

❑ Ex3: find binary representation of X = 9.6875 in IEEE 754
single precision

X = 9.6875(10) = 1001.1011(2) = 1.0011011 x 23

Then

S = 0

E = 127 + 3 = 130(10) = 1000 0010(2)

F = 001101100...00 (23 bit)

Finally

X = 0100 0001 0001 1011 0000 0000 0000 0000

IT3030E, Fall 2024 63

Examples

❑ 1.02 x 2-1 =

❑ 100.7510 =

IT3030E, Fall 2024 64

Some special values

❑ Smallest+: 0 00000001 1.00000000000000000000000

= 1 x 21-127

❑ Zero: 0 00000000 00000000000000000000000

= true 0

❑ Largest+: 0 11111110 1.11111111111111111111111

= (2-2-23) x 2254-127

IT3030E, Fall 2024 65

Too large or too small values

❑ Overflow (floating point) happens when a positive
exponent becomes too large to fit in the exponent field

❑ Underflow (floating point) happens when a negative
exponent becomes too large to fit in the exponent field

s E (exponent) F (fraction)

1 bit 11 bits 20 bits

F (fraction continued)

32 bits

Double precision: 64 bits

+∞-∞

+ largestE +largestF+ largestE -largestF

- largestE +smallestF- largestE -smallestF

21272-127-2-127-2127

IT3030E, Fall 2024 66

Too large or too small values

❑ Question:

How to represent a number less than 2-127?

❑ Answers: use de-normalized representation

All bits of E are zero: 00000000

One bit of M is not zero, i.e., F is nonzero

Value representation:

0.fraction x 2-126

IT3030E, Fall 2024 67

IEEE 754 FP Standard Encoding

❑ Special encodings are used to represent unusual events

± infinity for division by zero

NAN (not a number) for invalid operations such as 0/0

True zero is the bit string all zero

Single Precision Double Precision Object
RepresentedE (8) F (23) E (11) F (52)

0000 0000 0 0000 … 0000 0 true zero (0)

0000 0000 nonzero 0000 … 0000 nonzero ± denormalized
number

0111 1111 to
+127,-126

anything 0111 …1111 to
+1023,-1022

anything ± floating point
number

1111 1111 + 0 1111 … 1111 - 0 ± infinity

1111 1111 nonzero 1111 … 1111 nonzero not a number
(NaN)

IT3030E, Fall 2024 68

Floating Point Addition

❑ Addition (and subtraction)

(F1  2E1) + (F2  2E2) = F3  2E3

Step 0: Restore the hidden bit in F1 and in F2

Step 1: Align fractions by right shifting F2 by E1 - E2
positions (assuming E1  E2) keeping track of (three of) the
bits shifted out in G R and S

Step 2: Add the resulting F2 to F1 to form F3

Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- If F1 and F2 have the same sign → F3 [1,4) → 1 bit right shift F3 and increment

E3 (check for overflow)

- If F1 and F2 have different signs → F3 may require many left shifts each time
decrementing E3 (check for underflow)

Step 4: Round F3 and possibly normalize F3 again

Step 5: Rehide the most significant bit of F3 before storing
the result

IT3030E, Fall 2024 69

Floating Point Addition Example

❑ Add

(0.5 = 1.0000  2-1) + (-0.4375 = -1.1100 2-2)

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

IT3030E, Fall 2024 70

Floating Point Addition Example

❑ Add: 0.5 + (-0.4375) = ?

(0.5 = 1.0000  2-1) + (-0.4375 = -1.1100 2-2)

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Hidden bits restored in the representation above

Shift significand with the smaller exponent (1.1100)

right until its exponent matches the larger exponent

(so once)
Add significands

1.000 + (-0.111) = 1.000 – 0.111 = 0.001

Normalize the sum, checking for exponent

over/underflow

0.001 x 2-1 = 0.010 x 2-2 = .. = 1.000 x 2-4

The sum is already rounded, so we’re done

Rehide the hidden bit before storing

IT3030E, Fall 2024 71

Floating Point Multiplication

❑ Multiplication

(F1  2E1) x (F2  2E2) = F3  2E3

Step 0: Restore the hidden bit in F1 and in F2

Step 1: Add the two (biased) exponents and subtract the
bias from the sum, so E1 + E2 – 127 = E3

also determine the sign of the product (which depends on
the sign of the operands (most significant bits))

Step 2: Multiply F1 by F2 to form a double precision F3

Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- Since F1 and F2 come in normalized → F3 [1,4) → 1 bit right shift F3 and

increment E3

- Check for overflow/underflow

Step 4: Round F3 and possibly normalize F3 again

Step 5: Rehide the most significant bit of F3 before storing
the result

IT3030E, Fall 2024 72

Floating Point Multiplication Example

❑ Multiply

(0.5 = 1.0000  2-1) x (-0.4375 = -1.1100 2-2)

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

IT3030E, Fall 2024 73

Floating Point Multiplication Example

❑ Multiply

(0.5 = 1.0000  2-1) x (-0.4375 = -1.1100 2-2)

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Hidden bits restored in the representation above

Add the exponents (not in bias would be -1 + (-2) = -

3 and in bias would be (-1+127) + (-2+127) – 127 =

(-1 -2) + (127+127-127) = -3 + 127 = 124

Multiply the significands

1.000 x 1.110 = 1.110000

Normalized the product, checking for exp over/underflow

1.110000 x 2-3 is already normalized

The product is already rounded, so we’re done

Rehide the hidden bit before storing

IT3030E, Fall 2024 74

Support for Accurate Arithmetic

❑ Rounding (except for truncation) requires the hardware
to include extra F bits during calculations

Guard and Round bit – 2 additional bits to increase accuracy

Sticky bit – used to support Round to nearest even; is set to a 1
whenever a 1 bit shifts (right) through it (e.g., when aligning F
during addition/subtraction)

❑ IEEE 754 FP rounding modes

Always round up (toward +∞)

Always round down (toward -∞)

Truncate

Round to nearest even (when the Guard || Round || Sticky are
100) – always creates a 0 in the least significant (kept) bit of F

F = 1 . xxxxxxxxxxxxxxxxxxxxxxx G R S

http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html

http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html

IT3030E, Fall 2024 75

Example

❑ Calculate:

0.2 x 5 = ?

0.333 x 3 = ?

(1.0/3) x 3 = ?

IT3030E, Fall 2024 76

Floating point instructions: RV32F

IT3030E, Fall 2024 77

Exercise

❑ Write the corresponding RISC-V assembly program
equivalent to the following C code:

float x = 0.75;

printf(“%f”, x);

IT3030E, Fall 2024 78

Solution

.data

x: .float 0.75

.text

la t1, x

flw ft0, 0(t1) #load x from mem

li a7, 2 #function 2

fcvt.s.w ft1, zero #zero immediate

fadd.s fa0, ft0, ft1 #move data to fa0

ecall #print

