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What are stored inside computer?

❑ Data, of course!

l Audio, video, image, drawings,…

l Documents, personal information,…

l Finance record, corporate business data,…

l …

❑ Complex data is constructed from basic data types.

l Integers

l Real numbers (Floating point)

l Symbols (Characters)

❑ All are represented as binary numbers.
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Content

❑ (Super) Basics of logic design

❑ Integer representation

❑ Integer arithmetic (inside computer)

❑ Floating point number representation and arithmetic
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Unsigned Binary Integers

❑ Using n-bit binary number to represent non-negative 
integer
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❑ Range: 0 to +2n – 1

❑ Example

0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

❑ Data range using 32 bits

0 to 232-1 = 4,294,967,295
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Eg: 32 bit Unsigned Binary Integers

Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100 232-4

0xFFFFFFFD 1…1101 232-3

0xFFFFFFFE 1…1110 232-2

0xFFFFFFFF 1…1111 232-1
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Exercise

❑ Convert from decimal to 32-bit binary integers

25   = 0000 0000 0000 0000 0000 0000 0001 1001

125 = 0000 0000 0000 0000 0000 0000 0111 1101

255 = 0000 0000 0000 0000 0000 0000 1111 1111

❑ Convert 32-bit binary integers to decimal

0000 0000 0000 0000 0000 0000 1100 1111 = 207

0000 0000 0000 0000 0000 0001 0011 0011 = 307



IT3030E, Fall 2024 8

Signed binary integers

❑ Using n-bit binary number to represent integer, including 
negative values 
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❑ Range: –2n – 1 to +2n – 1 – 1

❑ The left most bit (msb) indicates the sign of the 
number

❑ Example

1111 1111 1111 1111 1111 1111 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

❑ Using 32 bits

–2,147,483,648 to +2,147,483,647
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Signed integer negation 

❑ Given 𝑥 = 𝑥𝑛 − 1𝑥𝑛 − 2 …
𝑥1𝑥0, how to calculate −𝑥?

❑ Let ҧ𝑥 = 1′𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑥

ҧ𝑥 = 1111…112 − 𝑥

(1 → 0, 0 → 1)

Then 

ҧ𝑥 + 𝑥 = 1111…112 = −1

➔ ҧ𝑥 + 1 = −𝑥

❑ The computer uses 2’s complement form to represent a 
negative number 

❑ Example: find binary representation of -2

+2 = 0000 0000 … 00102

–2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102
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Exercise 

❑ Find 16 bit signed integer representation of

16    =  0000 0000 0001 0000

-16   =  1111 1111 1111 0000

100  =  0000 0000 0110 0100

-100 =  1111 1111 1001 1100
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Sign extension

❑ Given n-bit integer 𝑥 = 𝑥𝑛 − 1𝑥𝑛 − 2 …
𝑥1𝑥0

❑ Find corresponding m-bit representation (m > n) with the 
same numeric value 

𝑥 = 𝑥𝑚 − 1𝑥𝑚 − 2 …
𝑥1𝑥0

❑→ Replicate the sign bit to the left

❑Examples: 8-bit to 16-bit

+2: 0000 0010 => 0000 0000 0000 0010

–2: 1111 1110 => 1111 1111 1111 1110
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Instruction to work with sign/unsigned

❑ lb/lbu, lh/lhu

❑ blt/bltu, bge/bgeu

❑ slt/sltu, slti/sltiu

❑ div/divu, rem/remu



IT3030E, Fall 2024 14

Example 

❑ What is the output of the following program?

❑ What if the blt instruction is replaced by bltu?

li t0, 20
li t1, -20
bltu t1, t0, else
li a0, 1
j print

else:
li a0, 0

print:
li a7, 1
ecall
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Example 

❑ What are the decimal values of s0, s1, s2, s3?

.data 
x: .byte 20
y: .byte -20

.text
la t0, x
la t1, y
lb s0, 0(t0)
lbu s1, 0(t0)
lb s2, 0(t1)
lbu s3, 0(t1)
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Addition and subtraction

❑ Addition

l Similar to what you do to add two numbers manually

l Digits are added bit by bit from right to left

l Carries passed to the next digit to the left

❑ Subtraction

l Negate the second operand then add to the first operand

+
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Carryout and Overflow

Operation Operand A Operand B Result indicating

overflow

A + B ≥ 0 ≥ 0 < 0

A + B < 0 < 0 ≥ 0

A - B ≥ 0 < 0 < 0

A - B < 0 ≥ 0 ≥ 0

❑ Carryout: adding or substracting n-bit binary numbers result in 
carryout to or borrow from bit n+1.

❑ Overflow: adding or subtracting n-bit signed integers result in a value 
that cannot be represented by a n-bit signed integer.

❑ When adding operands with different signs or when subtracting 
operands with the same sign, overflow can never occur
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Overflow consequences

❑ Incorrect results: the result may 

l wrap around (unsigned numbers), or 

l change sign (signed numbers)

❑Hardware exception: 

l In Intel x86: the overflow flag (a specific bit in a global 
flag register) is set when overflow occurs, allowing 
software to detect it.

l In RISC-V: hardware does not care about the 
overflow → must be handled explicitly by software
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Examples 

❑ All numbers are 8-bit signed integer

12 + 8 = 

122 + 8 = 

122 + 80 = 

122 - 80 = 
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Arithmetic from hardware viewpoint

❑How does computer implement the addition by 
hardware?

l Answer: the computer implements logic circuits

l Logic circuits are built using logic gates: AND, OR, 
NOT

l Supported theory: Boolean algebra
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Basics of logic design (Appendix A)

❑ Boolean logic: logic variable and operators

❑ Logic variable: values of 1 (TRUE) or 0 (FALSE)

❑ Basic operators: AND, OR, NOT

l A  AND  B :  

l A  OR  B : 

l NOT  A : 

l Order: NOT > AND > OR

❑ Additional operators: NAND, NOR, XOR

l A  NAND  B: 

l A  NOR  B : 

l A  XOR  B:  

A·B

BA+

BABABA •+•=

A·B  hay  AB

A

A+B
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Truth tables

A B
A AND B 
A•B

0 0 0

0 1 0

1 0 0

1 1 1

A B
A OR B 
A + B

0 0 0

0 1 1

1 0 1

1 1 1

A B
A NAND B 

𝐴. 𝐵

0 0 1

0 1 1

1 0 1

1 1 0

A B
A NOR B 

𝐴 + 𝐵

0 0 1

0 1 0

1 0 0

1 1 0

A
NOT A

ҧ𝐴

0 1

1 0

A B
A XOR B 

A  B

0 0 0

0 1 1

1 0 1

1 1 0

Unary operator NOT
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Logic gates
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Laws of Boolean algebra

A • B = B • A 

A • (B + C) = (A • B) + (A • C)

1 • A = A

A • A = 0

0 • A = 0

A • A = A

A • (B • C) = (A • B) • C

A • B = A + B (DeMorgan’s law)

A + B = B + A

A + (B • C) = (A + B) • ( A + C)

0 + A = A

A + A = 1

1 + A = 1

A + A = A

A + (B + C) = (A + B) + C

A + B = A • B (DeMorgan’s law)

24
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Example: multiplexor

❑Depending on S, output C is equal to one of the 
two inputs A, B

❑Explain how this circuit works?
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Truth table

A

B

S

C

MUX 2-1

S C

0 A

1 B

AB
S 00 01 11 10

0 1 1

1 1 1

S B A C

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Multiplexor explaination

26

𝐶 = 𝐴 ҧ𝑆 + BS
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Adder implementation

❑ 1-bit full adder

❑ 𝑆 = 𝐶𝑖𝑛⨁ 𝐴⨁𝐵

❑ 𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐵𝐶𝑖𝑛 + 𝐴𝐶𝑖𝑛

A

B

1-bit

ALU
S

Cin

Cout

Inputs Outputs

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Adder implementation

❑ N-bit ripple-carry adder

➔ Performance is low

A0

B0

1-bit

ALU
result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
result2

CarryIn2

CarryOut2

A3

B3

1-bit

ALU
result3

CarryIn3

CarryOut3

Performance depends 

on data length
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Making addition faster: infinite hardware

❑ Parallelize the adder with the cost of hardware

❑ Given the addition: 
𝑎𝑛 − 1𝑎𝑛 − 2 …

𝑎1𝑎0 + 𝑏𝑛
− 1𝑏𝑛 − 2 …

𝑏1𝑏0

❑ Let 𝑐𝑖 is the carry at bit 𝑖
c2 = (b1 . c1) + (a1 . c1) + (a1 . b1)
c1 = (b0 . C0) + (a0 . c0) + (a0 . b0)

❑ Then 

❑ We can hardwire the adder circuit to have super-fast 
performance. Problem: too many hardware gates!

c2 = (a1 . a0 . b0)

+ (a1 . a0 . c0)

+ (a1 . b0 . c0)

+ (b1 . a0 . b0)

+ (b1 . a0 . c0)

+ (b1 . b0 . c0)

+ (a1 . b1)

𝑐𝑛 − 1 will be 

extremely complicated

Find c2 from a0, b0, a1, b1?
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Making addition faster: Carry Lookahead

❑ Video demo: 
https://www.youtube.com/watch?v=yj6wo5SCObY

❑ Approach

l Make hardwired 4 bit adder → fast and simple enough

l Develop a carry lookahead unit to calculate the carry bit before 
finishing the addition

❑ At bit 𝑖

❑ Denote 

❑ Then

https://www.youtube.com/watch?v=yj6wo5SCObY
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Carry lookahead

❑ With 4-bit adder

➔All carry bits can be calculated after 3 gate delay

➔All result bits can be calculated after maximum of 4 gate 
delay

➔How to implement bigger adder?



IT3030E, Fall 2024 33

Carry lookahead

❑ For 16-bit adder → fast C1, C2, C3, C4 is needed

C0 = 0

C1

C2

C3

C4
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Carry lookahead

❑ Denote 

❑ Then big-carry bits can be calculated fast
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16-bit Adder
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Multiply

❑ Binary multiplication is just a bunch of right shifts and 
adds

multiplicand

multiplier

partial

product

array

double precision product 

n

2n

n
can be formed in parallel 

and added in parallel for 

faster multiplication

n-bit multiplicand and multiplier → 2n-bit product
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Example 

How to do this in hardware?
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Add and Right Shift Multiplier

Start

C = 0; A = 0

M = Multiplicand

Q = Multiplier

counter = n

Q0 = 1 C, A = A + M

Shift right C, A, Q

counter = counter - 1

counter = 0

End

Y

N

Y

N
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Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add

shift

right

product

0 1 1 0     = 6

0 0 0 0  0 1 0 1   = 5
add  0 1 1 0  0 1 0 1

add  0 0 1 1  0 0 1 0

add  0 1 1 1  1 0 0 1

add  0 0 1 1  1 1 0 0

0 0 1 1  0 0 1 0

0 0 0 1  1 0 0 1 

0 0 0 1  1 1 1 0

0 0 1 1  1 1 0 0

= 30

6 x 5 = ?

4-bit integer

LSB=1 → add multiplicand

shift right

LSB=0 → no change

shift right

LSB=1 → add multiplicand

shift right

LSB=0 → no change

shift right
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Fast multiplier – Design for Moore

❑ Why is this fast?
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Fast multiplier – Design for Moore

❑ How fast is this?

❑ Note: the size of addition circuits
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RISC-V Multiply Instruction (RV32M extension)

❑ Multiply instructions: mul, mulh mulhu, mulhsu

mul t1, s0, s1 #set t1 to lower 32 bits 

of s0 * s1

mulh t1, s0, s1 #set t1 to upper 32 bits 

of s0 * s1

mulhu t1, s0, s1 #set t1 to upper 32 bits of 

s0 * s1(unsigned multiplication)

mulhsu t1, s0, s1 #set t1 to upper 32 bits 

of s0 * s1, where s0 is signed and s1 is 

unsigned
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Division

❑ Division is just a bunch of quotient digit guesses and left 
shifts and subtracts

dividend = quotient x divisor  +  remainder

dividend

divisor

partial

remainder

array

quotientn

n

remainder
n

0 0 0

0

0

0
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Left Shift and Subtract Division Hardware

divisor   

32-bit ALU

quotient  Control

subtract

shift

left

dividend

remainder

0 0 1 0       = 2

0 0 0 0         0 1 1 0     = 6

0 0 0 0         1 1 0 0
sub  1 1 1 0         1 1 0 0 rem<0, so quotient bit = 0

0 0 0 0         1 1 0 0 and restore remainder
0 0 0 1         1 0 0 0

sub  1 1 1 1         1 0 0 0 rem<0, so quotient bit = 0
0 0 0 1         1 0 0 0 and restore remainder
0 0 1 1         0 0 0 0

sub  0 0 0 1         0 0 0 1 rem0, so quotient bit = 1

0 0 1 0         0 0 1 0
sub  0 0 0 0         0 0 1 1 rem0, so quotient bit = 1

all bits of divident are processed
Result: remainder 0, quotient 3
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RISC-V Divide Instruction (RV32M extension)

❑ Instructions:

div t1, t2, t3 #t1 = t2/t3 (signed division)

divu t1, t2, t3 #t1 = t2/t3 (unsigned division)

rem  t1, t2, t3 #t1 = remainder of t2/t3

remu t1, t2, t3 #t1 = remainder of t2/t3 

(unsigned)  

❑ As with multiply, divide ignores overflow so software
must determine if the quotient is too large.

❑ Software must also check the divisor to avoid
division by 0.
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Signed integer multiplication and division

❑ Reuse unsigned multiplication then fix product sign later

❑ Multiplication

l Multiplicand and multiplier are of the same sign: keep product

l Multiplicand and multiplier are of different sign: negate product

❑ Division:

l Dividend and divisor of the same sign: 

- Keep quotient

- Keep/negate remainder so it is of the same sign with dividend

l Dividend and divisor of different sign: 

- Negate quotient

- Keep/negate remainder so it is of the same sign with dividend
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Example  

❑ Write a RISC-V program

l Reads 2 integers a and b from console

l Print out the two values: (a / b) and (a % b) to console
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Exercise 

❑ Write a program that

l Reads two integers a and b from console.

l Find and print out the greatest common divisor of a and b.

l Find and print out the least common multiplier of a and b.
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Representing Big (and Small) Numbers

❑ Encoding non-integer value?

Earth mass:             (5.9722±0.0006)×1024 (kg)

Weight of an amu (atomic mass unit, 1/12 mass of C12)

0.0000000000000000000000000166    or   1.6 x 10-27 (kg)

PI number

PI = 3.14159….

❑ Problem: how to represent the above numbers?

➔We need reals or floating-point numbers!

➔Floating point numbers in decimal:

➔ 1000

➔ 1 x 103

➔ 0.1 x 104
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Floating point number

❑ In decimal system

2013.1228 = 201.31228 * 10

= 20.131228 * 102

= 2.0131228 * 103

= 20131228 * 10-4

❑ What is the “standard” form?

2.0131228 * 103 = 2.0131228E+03

❑ In binary X = 1.xxxxx * 2yyyy

❑ Sign, mantissa, and exponent need to be represented

mantissa exponent
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Floating point number

❑ Defined by the IEEE 754-1985 standard

❑ Single precision: 32 bit

❑ Double precision: 64 bit

❑ Correspond to float and double in C

❑ Single precision floating point representation

(-1)sign x  1.F x 2E-bias

Fit everything in 32 bits

Bias = 127 (with single precision)

s    E (exponent)                              F (fraction)

1 sign bit        8 bits                                     23 bits
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Examples

❑ Ex1: convert X into decimal value

X = 1100 0001 0101 0110 0000 0000 0000 0000

sign = 1 → X is negative

E = 1000 0010 = 130

F = 10101100...00

→ X = (-1)1 x 1.101011000..00 x 2130-127

= -1.101011 x 23 = -1101.011 

= -13.375 
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Example 

❑ Ex2: find decimal value of X

X = 0011 1111 1000 0000 0000 0000 0000 0000

sign = 0

E = 0111 1111 = 127 

F = 000…0000 (23 bit 0)

X = (-1)0 x 1.00…000 x 2127-127 = 1.0
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Example

❑ Ex3: find binary representation of X = 9.6875 in IEEE 754 
single precision

Converting X to plain binary

910 = 10012

0.6875 x 2 = 1.375    → get bit 1

0.375 x 2 = 0.75      → get bit 0

0.75 x 2 = 1.5         → get bit 1

0.5 x    = 1.0         → get bit 1

➔ 9.687510 = 1001.10112
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Example

❑ Ex3: find binary representation of X = 9.6875 in IEEE 754 
single precision

X = 9.6875(10) = 1001.1011(2) = 1.0011011 x 23

Then

S = 0

E = 127 + 3 = 130(10) = 1000 0010(2)

F = 001101100...00 (23 bit)

Finally

X = 0100 0001 0001 1011 0000 0000 0000 0000
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Examples

❑ 1.02 x 2-1 =

❑ 100.7510 =
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Some special values

❑ Smallest+: 0 00000001 1.00000000000000000000000 

= 1 x 21-127

❑ Zero:          0 00000000 00000000000000000000000 

= true 0

❑ Largest+:   0 11111110 1.11111111111111111111111 

=  (2-2-23) x 2254-127
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Too large or too small values

❑ Overflow (floating point) happens when a positive 
exponent becomes too large to fit in the exponent field

❑ Underflow (floating point) happens when a negative 
exponent becomes too large to fit in the exponent field

s  E (exponent)                            F (fraction)

1 bit         11 bits                                       20 bits

F (fraction continued)

32 bits

Double precision: 64 bits

+∞-∞

+ largestE +largestF+ largestE -largestF

- largestE +smallestF- largestE -smallestF

21272-127-2-127-2127
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Too large or too small values

❑ Question:

How to represent a number less than 2-127?

❑ Answers: use de-normalized representation

All bits of E are zero: 00000000

One bit of M is not zero, i.e., F is nonzero

Value representation:

0.fraction x 2-126



IT3030E, Fall 2024 67

IEEE 754 FP Standard Encoding

❑ Special encodings are used to represent unusual events

± infinity for division by zero

NAN (not a number) for invalid operations such as 0/0

True zero is the bit string all zero

Single Precision Double Precision Object 
RepresentedE (8) F (23) E (11) F (52)

0000 0000 0 0000 … 0000 0 true zero (0)

0000 0000 nonzero 0000 … 0000 nonzero ± denormalized
number

0111 1111  to 
+127,-126

anything 0111 …1111  to         
+1023,-1022

anything ± floating point 
number

1111 1111 + 0 1111 … 1111 - 0 ± infinity

1111 1111 nonzero 1111 … 1111 nonzero not a number 
(NaN)
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Floating Point Addition

❑ Addition (and subtraction)

(F1  2E1) + (F2  2E2) = F3  2E3

Step 0: Restore the hidden bit in F1 and in F2

Step 1: Align fractions by right shifting F2 by E1 - E2 
positions (assuming E1  E2) keeping track of (three of) the 
bits shifted out in G R and S

Step 2: Add the resulting F2 to F1 to form F3

Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- If F1 and F2 have the same sign → F3 [1,4) → 1 bit right shift F3 and increment 

E3 (check for overflow)

- If F1 and F2 have different signs → F3 may require many left shifts each time 
decrementing E3 (check for underflow)

Step 4: Round F3 and possibly normalize F3 again

Step 5: Rehide the most significant bit of F3 before storing 
the result 
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Floating Point Addition Example

❑ Add

(0.5 = 1.0000  2-1) + (-0.4375 = -1.1100 2-2) 

Step 0: 

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
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Floating Point Addition Example

❑ Add:   0.5 + (-0.4375) = ?

(0.5 = 1.0000  2-1) + (-0.4375 = -1.1100 2-2) 

Step 0: 

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Hidden bits restored in the representation above

Shift significand with the smaller exponent (1.1100) 

right until its exponent matches the larger exponent 

(so once)
Add significands

1.000 + (-0.111) = 1.000 – 0.111 = 0.001

Normalize the sum, checking for exponent 

over/underflow

0.001 x 2-1 = 0.010 x 2-2 = .. =  1.000 x 2-4

The sum is already rounded, so we’re done

Rehide the hidden bit before storing
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Floating Point Multiplication

❑ Multiplication

(F1  2E1) x (F2  2E2) = F3  2E3

Step 0: Restore the hidden bit in F1 and in F2

Step 1: Add the two (biased) exponents and subtract the 
bias from the sum, so E1 + E2 – 127 = E3

also determine the sign of the product (which depends on 
the sign of the operands (most significant bits))

Step 2: Multiply F1 by F2 to form a double precision F3

Step 3: Normalize F3 (so it is in the form 1.XXXXX …)
- Since F1 and F2 come in normalized → F3 [1,4) → 1 bit right shift F3 and 

increment E3

- Check for overflow/underflow

Step 4: Round F3 and possibly normalize F3 again

Step 5: Rehide the most significant bit of F3 before storing 
the result 
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Floating Point Multiplication Example

❑ Multiply

(0.5 = 1.0000  2-1) x (-0.4375 = -1.1100 2-2) 

Step 0: 

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:
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Floating Point Multiplication Example

❑ Multiply

(0.5 = 1.0000  2-1) x (-0.4375 = -1.1100 2-2) 

Step 0: 

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Hidden bits restored in the representation above

Add the exponents (not in bias would be -1 + (-2) = -

3 and in bias would be (-1+127) + (-2+127) – 127 =     

(-1 -2) + (127+127-127) = -3 + 127 = 124

Multiply the significands

1.000 x 1.110 = 1.110000

Normalized the product, checking for exp over/underflow

1.110000 x 2-3 is already normalized

The product is already rounded, so we’re done

Rehide the hidden bit before storing
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Support for Accurate Arithmetic

❑ Rounding (except for truncation) requires the hardware 
to include extra F bits during calculations

Guard and Round bit – 2 additional bits to increase accuracy

Sticky bit – used to support Round to nearest even; is set to a 1 
whenever a 1 bit shifts (right) through it (e.g., when aligning F   
during addition/subtraction)

❑ IEEE 754 FP rounding modes

Always round up (toward +∞)

Always round down (toward -∞)

Truncate

Round to nearest even (when the Guard || Round || Sticky are 
100) – always creates a 0 in the least significant (kept) bit of F

F  =  1 . xxxxxxxxxxxxxxxxxxxxxxx G R S

http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html

http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html
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Example

❑ Calculate:

0.2 x 5 = ?

0.333 x 3 = ?

(1.0/3) x 3 = ?
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Floating point instructions: RV32F
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Exercise 

❑ Write the corresponding RISC-V assembly program 
equivalent to the following C code:

float x = 0.75;

printf(“%f”, x);
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Solution

.data 

x: .float 0.75

.text

la t1, x

flw ft0, 0(t1) #load x from mem

li a7, 2 #function 2

fcvt.s.w ft1, zero #zero immediate

fadd.s fa0, ft0, ft1 #move data to fa0

ecall #print


