
IT3030E, Fall 2024 1

Computer Architecture

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep
Department of Computer Engineering

School of Information and Communication Technology (SoICT)

Hanoi University of Science and Technology

E-mail: [trungnl, hungpn, hiephv]@soict.hust.edu.vn

IT3030E, Fall 2024 2

Chapter 3: Instruction Set Architecture
(Language of the Computer)

[with materials from COD, RISC-V 2nd Edition, Patterson & Hennessy 2021,

M.J. Irwin’s presentation, PSU 2008,

The RISC-V Instruction Set Manual, Volume I, ver. 2.2]

IT3030E, Fall 2024 3

Content

❑ Introduction

❑ RISC-V Instruction Set Architecture

l Operands

l Instruction set (basic RV32I variant)

l RISC-V instruction formats

l Other RISC-V instructions

❑ Basic programming structures

l Branch and loop

l Procedure call

l Array and string

IT3030E, Fall 2024 4

What is RISC-V and its advantages (over ARM, x86)?

❑ Developed at UC Berkeley as open ISA (2010).

❑ Typical of many modern ISAs, which have a large share
of embedded market.

l RISC CPUs: Pioneers of Modern Computer Architecture
Receive ACM A.M. Turing Award

❑ Now managed by the RISC-V Foundation/RISC-V
International (https://riscv.org/, since 2015).

❑ “RISC-V combines a modular technical approach with an open, royalty-
free ISA — meaning that anyone, anywhere can benefit from the IP

contributed and produced by RISC-V.” - RISC-V International.

❑ “RISC-V does not take a political position on behalf of any geography.”
- RISC-V International.

https://www.acm.org/media-center/2018/march/turing-award-2017
https://riscv.org/

IT3030E, Fall 2024 5

Computer language: hardware operation

❑ Want to command the computer?

➔ You need to speak its language!!!

❑ Example: RISC-V assembly instruction

add a, b, c #a  b + c

❑ Operation performed

add b and c,

then store result into a

add a, b, c #a  b + c

operation operands comments

IT3030E, Fall 2024 6

Hardware operation

❑ What does the following code do?

add t0, g, h # t0 = g + h
add t1, i, j # t1 = i + j
sub f, t0, t1 # f = t0 - t1

❑ Equivalent C code

f = (g + h) – (i + j)

➔Why not making 4- or 5-input instructions?

➔ DP1: Simplicity favors regularity!

Instruction format significantly influences
hardware design.

IT3030E, Fall 2024 7

Operands

❑ Object of operation

l Source operand: provides input data

l Destination operand: stores the result of operation

❑ RISC-V operands

l Registers

l Memory

l Constant/Immediate

IT3030E, Fall 2024 8

Data types in RISC-V

RV32 registers hold 32-bit (4-byte) words. Other common

data sizes include byte, halfword, and doubleword.

Byte

Halfword

 Word

Doubleword

Byte = 8 bits

Word = 4 bytes

Doubleword = 8 bytes

Halfword = 2 bytes

IT3030E, Fall 2024 9

Register operand: RISC-V Register File

❑ Special memory inside CPU, called register file

❑ 32 slots, each slot is called a register (RV32I)

❑ Each register holds 32 bits of data

❑ Each register has a unique 5-bit address

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

write control

Read ports

addresses
Read ports

data
Write ports

address and

data

IT3030E, Fall 2024 10

RISC-V Register Convention

❑ RISC-V: load/store machine

❑ Data processing done on registers inside CPU

RISC-V integer registers

IT3030E, Fall 2024 11

Register operand: RISC-V Register File

❑ Register file: “work place” right inside CPU.

❑ Larger register file should be better, more flexibility for
CPU operation.

❑ Moore’s law: doubled number of transistor every 18 mo.

❑ Why only 32 registers, not more?

➔ DP2: Smaller is faster!

Effective use of register file is critical!

IT3030E, Fall 2024 12

Memory operand

❑ Memory operands are stored in main memory

l Large size

l Outsize CPU →Slower than register file (100 to 500 times)

❑ High level language programs use memory operands

l Variables

l Array and string

l Composite data structures

❑ Operations with memory operands

l Units of byte/half word/word/double word

l Load data from memory to register

l Store data from register to memory

IT3030E, Fall 2024 13

RISC-V memory organization

0x0f

0x0e

0x0d

0x0c

0x0b

0x0a

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Word 3

Word 2

Word 1

Word 0

❑ Byte addressable

❑ Words are accessed
via byte address

❑ Only accessible via
load/store instructions

Data alignment

word address = 4 * word

number

RISC-V does not require

data alignment, but it is

strongly recommended.

➔ handled by compiler

Byte

address

(32 bit)

IT3030E, Fall 2024 14

RISC-V memory organization

0x0f

0x0e

0x0d

0x0c

0x0b

0x0a

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00

Word 3

Word 2

Word 1

Word 0

Byte

address

(32 bit)

Is this optimized to

declare a struct in C like

this?

Struct data

{

char x;

short y;

int z;

}

Aligned Data

• Primitive data type requires K
bytes

• Address must be multiple of K

IT3030E, Fall 2024 15

Example: z = x + y

❑ x, y, z are allocated in mem, but must transfer to reg before adding

❑ Note: currently focus on instruction set first, assembly programming
will be presented later

IT3030E, Fall 2024 16

Byte Order

❑ Big Endian: word address points to MSB

IBM 360/370, Motorola 68k, Sparc, HP PA

❑ Little Endian: word address points to LSB

Intel 80x86, DEC, MIPS, RISC-V

MSB LSB
3 2 1 0

little endian order

0 1 2 3

big endian order

(most significant byte) (least significant byte)

IT3030E, Fall 2024 17

Example

❑ Consider a word in RISC-V memory consists of 4 byte
with hexa value as below

❑ What is the word’s value?

68

1B

5D

FA

❑ RISC-V is little-endian: address of LSB is X

➔ word’s value: FA5D1B68

X+3

X+2

X+1

X

address value

IT3030E, Fall 2024 18

Immediate operand

❑ Immediate value specified by a constant number

❑ Examples:

l Assignment: int x = 2024;

l Const in expression: x = y + 10;

l Branching: if.. else.., goto,…

❑ Does not need to be stored in register file or memory

l Value stored right in instruction → faster

l Fixed value specified at design time

l Cannot change value at run time

❑ What is the most-used constant?

l 0 value is stored in the special register: zero (x0)

l Make common cases fast!

IT3030E, Fall 2024 19

Instruction set

❑ Instruction: binary string represent opcode + operands

❑ RISC-V (RV32 variant) base instructions are 32 bits long.

l Must be word-aligned in memory.

❑ 6 instruction formats

➔Why not only one format? Or 20 formats?

➔ DP3: Good design demands good compromises!

IT3030E, Fall 2024 20

Instruction categories

❑ Arithmetic: addition, subtraction,…

❑ Data transfer: transfer data between registers, memory,
and immediate

❑ Logical and bitwise: and, or, xor, shift left/right…

❑ Branch: conditional and unconditional

IT3030E, Fall 2024 21

Overview of RISC-V instruction set

Fig. 2.1

IT3030E, Fall 2024 22

Overview of RISC-V instruction set

IT3030E, Fall 2024 23

RISC-V Instruction set: Arithmetic operations

❑ RISC-V arithmetic statement

add rd, rs1, rs2 #rd  rs1 + rs2

sub rd, rs1, rs2 #rd  rs1 – rs2

addi rd, rs1, imm #rd  rs1 + imm

• rs1 5-bits register file address of the 1st source operand

• rs2 5-bits register file address of the 2nd source operand

• rd 5-bits register file address of the result’s destination

Why there is no subi instruction?

IT3030E, Fall 2024 24

Example

❑ Currently s1 = 6

❑ What is value of s1 after executing the following
instruction

addi s2, s1, 3

addi s1, s1, -2

sub s1, s2, s1

IT3030E, Fall 2024 25

RISC-V Instruction set: Logical operations

❑ Bitwise operations

IT3030E, Fall 2024 26

RISC-V Instruction set: Logical operations

❑ Basic logic operations

and rd, rs1, rs2 #rd  rs & rs2

andi rd, rs1, imm #rd  rs & imm

or rd, rs1, rs2 #rd  rs | rs2

ori rd, rs1, imm #rd  rs | imm

xor rd, rs1, rs2 #rd  rs ^ rs2

xor rd, rs1, imm #rd  rs ^ imm

❑ Example s1 = 8 = 0000 1000, s2 = 14 = 0000 1110

and s3, s1, s2

or s4, s1, s2

IT3030E, Fall 2024 27

RISC-V Instruction set: Shift operations

❑ Logical shift and arithmetic shift: move all the bits left or
right

sll rd, rs1, rs2 #rd  rs1 << rs2

srl rd, rs1, rs2 #rd  rs1 >> rs2

sra rd, rs1, rs2 #rd  rs1 >> rs2

(keep sign bit)

slli rd, rs1, imm #rd  rs1 << imm

srli rd, rs1, imm #rd  rs1 >> imm

srai rd, rs1, imm #rd  rs1 >> imm

(keep sign bit)

IT3030E, Fall 2024 28

RISC-V Instruction set: Memory access instructions

❑ RISC-V has two basic data transfer instructions for
accessing memory

lw rd, imm(rs1) #load word from memory

sw rs2, imm(rs1) #store word to memory

❑ The data is loaded into (lw) or stored from (sw) a register
in the register file

❑ The memory address is formed by adding the contents of
the base address register to the offset value

❑ Offset can be negative

❑ Data alignment is strongly recommended

❑ Why not the instruction is just like this: lw rd, imm?

IT3030E, Fall 2024 29

RISC-V Instruction set: Load Instruction

❑ Load/Store Instruction Format:

lw t0, 24(s3) #t0 mem at 24+s3

Which memory word will be loaded to t0?

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s3 0x12004094

2410 + $s3 =

. 0001 1000 (24)
+ . 1001 0100 (94)
. 1010 1100 (ac)

= 0x1200 40ac

0x120040ac$t0

24

IT3030E, Fall 2024 30

RISC-V Instruction set: Load Instruction

❑ Given the integer array A stored in memory, with base
address stored in x13.

int A[100]; //x13 holds address of A[0]

❑ What is equivalent C code of this?

lw x10, 12(x13)

addi x12, x10, 10

sw x12, 40(x13)

IT3030E, Fall 2024 31

RISC-V control flow instructions

❑ RISC-V conditional branch instructions:

bne rs1, rs2, Dest #go to Dest if rs1rs2
beq rs1, rs2, Dest #go to Dest if rs1=rs2

bge rs1, rs2, Dest #go to Dest if rs1>=rs2

blt rs1, rs2, Dest #go to Dest if rs1<rs2

bgeu/bltu: unsigned comparison

Ex: if (i==j)

h = i + j;

bne s0, s1, Exit

add s3, s0, s1

Exit : ...

IT3030E, Fall 2024 32

Example

start:

addi s0, zero, 2 #load value for s0

addi s1, zero, 2

addi s3, zero, 0

beq s0, s1, Exit

add s3, s2, s1

Exit: add s2, s3, s1

.end start

What is final value of s2?

IT3030E, Fall 2024 33

Unconditional branch

❑ Unconditional branch instruction or jump instruction:

j Dest #go to Dest

❑ Note: this is a pseudo-instruction implemented with the
jal instruction, and auipc instruction if necessary

IT3030E, Fall 2024 34

Comparison instruction

❑ Set flag based on condition: slt

❑ Set on less than instruction:

slt $t0, $s0, $s1 # if $s0 < $s1 then

$t0 = 1 else

$t0 = 0

❑ Alternate versions of slt

slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...

sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

❑ Can be combined with bne/beq for conditional branches

IT3030E, Fall 2024 35

Example

❑ Write assembly code to do the following

if (i<5)

X = 3;

else

X = 10;

Solution

slti t0,s1,5 # i<5? (inverse condition)

beq t0,zero,else # if i>=5 goto else part

addi t1,zero,3 # X = 3

j endif # skip the else part

else: addi t1,zero,10 # X = 10

endif:...

IT3030E, Fall 2024 36

Representation of RISC-V instruction

❑ All RISC-V instructions are 32 bits wide

The RISC-V Instruction Set Manual, Volume I: User-Level ISA

IT3030E, Fall 2024 37

R-format instruction: all operands are registers

❑ All fields are encoded by mnemonic names

❑ Examples

IT3030E, Fall 2024 38

Example of R-format instruction

add s1, s4, s5

add x9, x20, x21

0 21 20 0 9 51

0000000 10101 10100 000 01001 0110011

IT3030E, Fall 2024 39

I-format instruction: 2 registers + 1 immediate

❑ Combines the funct7 and rs2 for 12-bit immediate

❑ Examples

IT3030E, Fall 2024 40

Example

❑ Find machine codes of the following instructions

lw t0, 0(s1) # initialize maximum to A[0]

addi t1, zero, 0 # initialize index i to 0

addi t1, t1, 1 # increment index i by 1

IT3030E, Fall 2024 41

S-format instruction: 2 registers + 1 immediate

❑ Combines the funct7 and rd for 12-bit immediate

❑ Used for the store instructions, which does not require rd

❑ Examples

IT3030E, Fall 2024 42

B-format instruction: 2 registers + 1 immediate

❑ Combines the funct7 and rd for 13-bit immediate

l Lsb = 0 (imm[12:1] for half-word instruction address, more on
this later).

l Keep the same bit position as S-format

l Msb always in bit 31 of instruction word (simplified sign-
extension, also more on this later)

❑ As a result: position of 13 bits immediate are mixed

❑ Used for conditional jump instructions

IT3030E, Fall 2024 43

U- and J-format instruction: 1 register + 1 immediate

❑ Combines the funct7, funct3, rs1 and rs2 for 20-bit
immediate

❑ U-format: for load/add 20 bit upper-immediate to register

lui rd, upimm # rd  {upimm,000}

auipc rd, upimm # rd  PC + {upimm,000}

❑ J-format: for jump and link

jal rd, label # PC  PC+addr, rd  PC+4

addr = SignExt{imm,0}

❑ Pseudo-instruction j label ➔ jal x0, label

IT3030E, Fall 2024 44

Working with wide immediates and addresses

❑ Many operations need 32-bit immediates

l Loading 32-bit immediates to registers

l Loading addresses to registers

❑ However, instructions are only 32 bit-long

l Not sufficient to store 32-bit immediates in one instruction

l →combine 2 instructions to support wide immediates

❑ Example: load the value 0x3D0100 into s0

lui s0, 0x003D0 #s0  0x003D0000

addi s0, s0, 0x0100 #s0  0x003D0100

❑ Pseudo-instructions: combination of real instructions, for
convenience

l li, la

IT3030E, Fall 2024 45

Working with wide immediates and addresses

❑ Special case: long jump

❑ Conditional branches: blt, bne,..

l B-format, with 12 bit immediates

l Limited to 4 KB → limit branching distance

l Solution: change to jal

❑ Unconditional jump (jal)

l Distance is limited to 1MB

l Solution: use jalr, combine with auipc if necessary

jalr rd, rs1, imm # PC = rs1 + SignExt(imm), rd = PC+4

beq x10, x0, L1 #limit 4KB bne x10, x0, L2
jal x0, L1 #limit 1MB

L2:

IT3030E, Fall 2024 46

Exercise

❑ How branch instruction is executed?

❑➔ PC-relative addressing mode

slti t0, s1, 5

bne t0, zero, else

addi t1, zero, 3

j endif

else: addi t1, zero, 10

endif:...

How can CPU jump from here

to the “else” label?

IT3030E, Fall 2024 47

Example

switch(test) {

case 0:

a=a+1; break;

case 1:

a=a-1; break;

case 2:

b=2*b; break;

default:

}

Solution

beq s1,t0,case_0

beq s1,t1,case_1

beq s1,t2,case_2

j default

case_0:

addi s2,s2,1 #a=a+1

j continue

case_1:

sub s2,s2,t1 #a=a-1

j continue

case_2:

add s3,s3,s3 #b=2*b

j continue

default:

continue:

Assuming that: test,a,b are

stored in $s1,$s2,$s3

The simple switch

IT3030E, Fall 2024 48

Example

❑ Write assembly code correspond to the following C code

for (i = 0; i < n; i++)

sum = sum + A[i];

loop:

addi s1,s1,1 #i=i+step

add t1,s1,s1 #t1=2*s1

add t1,t1,t1 #t1=4*s1

add t1,t1,a0 #t1 <- address of A[i]

lw t0,0(t1) #load value of A[i] in t0

add s0,s0,t0 #sum = sum+A[i]

bne s1,a1,loop #if i != n, goto loop

IT3030E, Fall 2024 49

Example

The simple while loop: while (A[i]==k) i=i+1;

Assuming that: i, k, A are stored in x22,x24,x25

Solution

Loop:

slli x10, x22, 2 #i*4

add x10, x10, x25 #A[i] address

lw x9, 0(x10) #A[i] value

bne x9, x24, Exit #break if != k

addi x22, x22, 1 #next element

beq x0, x0, Loop

Exit: …

IT3030E, Fall 2024 50

Procedures

❑ Stack structure

❑ Passing control

l To beginning of procedure code

l Back to return point

❑ Passing data

l Procedure arguments

l Return value

❑ Register saving conventions

❑ Memory management

l Allocate during procedure execution

l Deallocate upon return

P(…) {

•

•

y = Q(x);

print(y)

•

}

int Q(int i)

{

int t = 3*i;

int v[10];

•

•

return v[t];

}

IT3030E, Fall 2024 51

Stack structure

❑ A region of memory operating on a Last In First Out
(LIFO) principle

❑ The bottom of stack is at the highest location

❑ sp: point to the top of the stack

b

a

$sp c
Frame for
current
procedure

$fp

. . .

Before calling

b

a

$sp

c
Frame for
previous
procedure

$fp

. . .

After calling

Frame for
current
procedure

Old ($fp)

Saved
registers

y

z

. . .

Local
variables

IT3030E, Fall 2024 52

Stack structure

❑To push data into stack

l addi sp, sp, -4

l sw t0, 0(sp)

❑To pop data from the stack

l lw t0, 0(sp)

l addi sp, sp, 4

l Note that: the data is still there in the stack, but we
are not going to work with it anymore.

IT3030E, Fall 2024 53

Passing control flow

❑ Procedure call: using RISC-V procedure call instruction
jal rd, ProcAddress #jump and link

l Saves the return address (PC+4) in destination register rd
(usually in ra or x1)

l Jump to the ProcAddress

❑ Return address:

l Address of the next instruction right after call

❑ Procedure return: procedure return with

jalr x0, 0(x1)

l Update the value of PC = ra

l Jump to the address hold by PC (the next instruction right after
procedure call)

IT3030E, Fall 2024 54

Passing control

jal proc

jr $ra

proc

Save, etc.

Restore

PC
Prepare

to continue

Prepare
to call

main

jalr x0, 0(x1)

IT3030E, Fall 2024 55

Passing control

❑ Demonstrate on the Rars simulator

❑ Take care the value of the pc and ra register!

IT3030E, Fall 2024 56

Procedure call and nested procedure call

Example of nested procedure call

Question: how can the CPU resume the main program execution?

IT3030E, Fall 2024 57

Passing data

❑Use registers

l Input arguments:

- a0-a7

- 8 parameters (arguments) maximum

l Return value:

- a0, a1

❑What if we want to pass more than 8 arguments
→ use the stack:

l Caller pushes arguments into stack before calling the
callee

l Callee get arguments from the stack

l (Optional) Callee saves the return value to the stack

l Question: who clean the stack, caller or callee?

IT3030E, Fall 2024 58

Register saving convention

❑Registers to be saved by the caller

l ra, t0-t6, a0-a7

❑Registers must be saved by the callee

l sp, s0-s11

❑Note: save the registers just in case you need to
modify them.

❑Question: where to save the above registers?

IT3030E, Fall 2024 59

Memory management

❑Question: where to locate the
local variables: t and v?

l Use registers: # of registers is
limited

l Use Stack

P(…) {

•

•

y = Q(x);

print(y)

•

}

int Q(int i)

{

int t = 3*i;

int v[10];

•

•

return v[t];

}

IT3030E, Fall 2024 60

Carnegie Mellon

Stack Frame

❑ Current Stack Frame (“Top” to
Bottom)

l “Argument build:”
Parameters for function about to call

l Local variables
If can’t keep in registers

l Saved register context

l Old frame pointer (optional)

❑ Caller Stack Frame

l Return address

- Pushed by jal instruction

l Arguments for this call

Return Addr

Saved
Registers
+
Local
Variables

Argument
Build
(Optional)

Old fp

Arguments
9+

Caller
Frame

Frame pointer
fp

Stack pointer
sp

(Optional)

IT3030E, Fall 2024 61

Six Steps in the Execution of a Procedure

1. Main routine (caller) places parameters in a place
where the procedure (callee) can access them

l a0 – a7 (x10 – x17): 8 argument registers

2. Caller transfers control to the callee (jal)

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the
caller can access it

l a0 – a1: two value registers for result values

6. Callee returns control to the caller (jalr)

l ra (x1): one return address register to return to caller

IT3030E, Fall 2024 62

Procedure that does not call another proc.

❑ C code:

int leaf_example (int g, h, i, j)

{

int f;

f = (g + h) - (i + j);

return f;

}

l g, h, i, j stored in a0, a1, a2, a3

l f in s0 (need to be saved)

l t0 and t1 used for temporary data

l Preserve all s0, t0, t1 for safety

l Result in a0

IT3030E, Fall 2024 63

Sample code

leaf_example:

addi sp, sp, -12

sw t1, 8(sp)

sw t0, 4(sp)

sw s0, 0(sp)

add t0, a0, a1

add t1, a2, a3

sub s0, t0, t1

add a0, s0, zero

lw s0, 0(sp)

lw t0, 4(sp)

lw t1, 8(sp)

addi sp, sp, 12

jalr zero, 0(ra)

room for 3 items

save t1

save t0

save s0

t0 = g+h

t1 = i+j

s0 = (g+h)-(i+j)

return value in a0

restore s0

restore t0

restore t1

deallocate

return to caller

Exercise: write code to utilize the procedure above

IT3030E, Fall 2024 64

Stack usage

IT3030E, Fall 2024 65

Procedure with nested proc.

❑ C code:

int fact (int n)

{

if (n < 1) return (1);

else return n * fact(n - 1);

}

l n in $a0

l Result in $a0

IT3030E, Fall 2024 66

Sample code

fact:

addi sp, sp, -8

sw ra, 4(sp)

sw a0, 0(sp)

addi t0, a0, -1

bge t0, zero, L1

addi a0, zero, 1

addi sp, sp, 8

jr ra

L1: addi a0, a0, -1

jal fact

add a1, a0, zero

lw a0, 0(sp)

lw ra, 4(sp)

addi sp, sp, 8

mul a0, a0, a1

jalr x0, 0(ra)

#2 items in stack

#save return address

#and current n

#n-1 > 0

#continue

#the base case, return 1

#deallocate 2 words

#and return

#otherwise reduce n

#then call fact again

#restore n

#and return address

#shrink stack

#value for normal case

#multiply with n

#and return

IT3030E, Fall 2024 67

RISC-V memory configuration

❑ Program text: stores machine code of program, declared
with .text

❑ Static data: data segment, declared with .data

❑ Heap: for dynamic allocation

❑ Stack: for local variable and dynamic allocation (LIFO)

IT3030E, Fall 2024 68

Accessing characters and string

❑ String is accessed as array of characters

❑ Accessing 1-byte characters

lb rd, imm(rs1) #load byte with sign-extension

lbu rd, imm(rs1) #load byte with zero-extension

sb rs2, 0(rs1) #store LSB to memory

IT3030E, Fall 2024 69

Accessing characters and string

❑ Accessing 2-byte characters

lh rd, imm(rs1) #load half with sign-extension

lhu rd, imm(rs1) #load half with zero-extension

sh rs2, 0(rs1) #store 2 LSB to memory

❑ Example: string copy

void strcpy (char x[], char y[])
{

int i = 0;
while ((x[i] = y[i]) != ‘\0’)

i += 1;
}

IT3030E, Fall 2024 70

Accessing characters and string

#x and y are in a0 and a1, i in s0
strcpy:

addi sp,sp,–4 # adjust stack for 1 more item
sw s0, 0(sp) # save s0
add s0, zero, zero # i = 0

L1: add t1, s0, a1 # address of y[i] in t1
lbu t2, 0(t1) # t2 = y[i]
add t3, s0, a0 # address of x[i] in t3
sb t2, 0(t3) # x[i] = y[i]
beq t2, zero,L2 # if y[i] == 0, go to L2
addi s0, s0, 1 # i = i + 1
beq x0, x0, L1 # go to L1

L2: lw s0, 0(sp) # y[i] == 0: end of string.
Restore old $s0

addi sp,sp,4 # pop 1 word off stack
jalr ra # return

IT3030E, Fall 2024 71

Interchange sort function

void sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i += 1)
{

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j-=1)
{

swap(v,j);
}

}
}
void swap(int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

IT3030E, Fall 2024 72

RISC-V Instruction Set Extensions

❑ The RV32I Instruction Set (that we have learnt so far)

l Instruction word: 32 bits

l Only work on integers

l Supports arithmetic, logic and shift, data transfer, branches

❑ How about:

l Other instruction word length?

l Data other than integers?

l Additional operations: multiplication, division…?

❑ Instruction Set Extensions

l Additional operations and data types

l Additional formats and customed formats

l → RISC-V scalable ISA

IT3030E, Fall 2024 73

RISC-V Standard Extensions

❑ 32-bit instruction extensions

l “M”: Integer Multiplication and Division Instructions

l “A”: Atomic (Memory) Instructions

l “F”: Single-Precision Floating-Point Instructions

l “D”: Double-Precision Floating-Point Instructions

❑ 16-bit: “C”: Compressed Instructions

RISC-V instruction length encoding

IT3030E, Fall 2024 74

RV32M: Integer Multiplication and Division Extension

❑ Support integer multiplication, division (div and rem)
operations.

❑ All are R-format.

IT3030E, Fall 2024 75

RV32A: Atomic Extension

❑ Support synchronized “atomic” memory access.

l Load + data op + Store become atomic.

l Similar to semaphore/mutex in multithread software.

l Basically R-format, with aq (acquire) and rl (release) bits.

IT3030E, Fall 2024 76

What is atomic instructions?

❑ Atomic refers to an operation that is indivisible, meaning
it is performed as a single, uninterruptible unit of work.

l Indivisible: the operation could not be interrupted or split into
sub-operation.

❑ An atomic operation is completed entirely or not at all,
with no intermediate states visible to other threads or
processes.

❑ Atomic operations are essential for building
synchronization primitives like semaphores and mutexes

IT3030E, Fall 2024 77

Example of atomic instructions for a mutex
implementation

IT3030E, Fall 2024 78

RV32F / D Floating-Point Extensions

❑ Support floating point operations.

l Additional floating point register file for new data type.

l Additional instructions to work with the new register file.

l Additional load/store instructions.

❑ Data representation and computation are compliant with
the IEEE 754-2008 standard (chapter 4).

l “F”: 32-bit single precision floating point numbers (float in C).

l “D”: 64-bit double precision floating point numbers (double in C).

RISC-V floating point register file

IT3030E, Fall 2024 79

RV32F / D Floating-Point Extensions

❑ Single precisision instructions

❑ .s for single, .d for double

IT3030E, Fall 2024 80

RVC Compressed Extension

❑ 16-bit length instructions

l Double code density compared to 32-bit instructions.

l Limited to most frequently-used instructions/operands.

l Overall 25% - 30% code-size reduction.

RVC Instruction Formats

RVC Registers for CIW, CL, CS, CB instructions

IT3030E, Fall 2024 81

RVC Compressed Instructions

IT3030E, Fall 2024 82

Further reading

❑ MIPS instruction set

❑ ARM instruction set

❑ x86 instruction set

IT3030E, Fall 2024 83

The end

