Lab 13. Assembly Programming in ESP32-C3 -
using Wokwi Simulation

Objective

In this practical session, students will become familiar with the ESP32-C3 kit, which is
based on the RISC-V architecture. Students will use assembly language to program simple
applications to control the input/output ports of the kit and run simulations using the
Wokwi emulator.

Reference
e ESP32-C3 Technical Reference Manual

Preparation

Introduction to MCU ESP32-C3
The ESP32-C3 is a System on Chip (SoC) developed by Espressif, featuring a
microcontroller based on the open-source RISC-V architecture. It achieves a balanced
combination of performance, peripheral connectivity, and security, offering a cost-
effective solution for connected devices. The 32-bit RISC-V microcontroller can operate
at a maximum clock speed of 160 MHz. With 22 configurable General Purpose
Input/Output (GPIO) pins, 400 KB of RAM, and low-power mode support, it is suitable
for various applications involving connected devices.

Electronics manufacturers often produce development
boards (also known as kits). In addition to the primary
microcontroller module, these Kits integrate electronic
circuits to enhance usability, such as USB programming
interfaces, voltage control circuits, status LEDs, and more.
The image on the right shows the ESP32-C3-DevKitM-1
board developed by Espressif. Other versions by different
manufacturers are also available.

When working with these development boards, students need to refer to the datasheet to
understand how to use the board, including pin layouts, operating modes, and other
specifications.

Simulating the ESP32-C3 Kit with Wokwi
Wokwi is a web-based application that allows the simulation of popular embedded system
development boards such as Arduino, STM32, and ESP32. The platform provides an

interface where developers can write code and test it on simulated embedded systems.
Additionally, Wokwi offers basic electronic components, which act as peripherals
connected to the embedded system, including LEDs, 7-segment displays, LCD screens,
buttons, switches, resistors, and more. These features make it possible to simulate and test
simple embedded applications effectively..

v | W RISC-LED - Wokwi
>

[}

o diagramjsen blink.S Library Manager on
1 .global dnit ° ° o
3 Su hinh v ic chan GPI0

3 .eqv GPIO_ENABLE_REG, 9x69094620 # Thanh ghi ciu hinh wio/ra cdc
4 .eqv GPIO_OUT_WITS_REG, 8x88084048 # Thanh ghi thist 13p chin GPIO

rsti0x1 (POWERON),boot:@xc (SPI_FAST_FLASH_BOOT)
SPIWP:@xee
mode:DI0, clock div:l
load:@x3fcd6108, lan:0x42e
1Bxgec

|nm

Editor and Simulator of Wokwi

Wokwi Assembly Programming on ESP32-C3 Using Wokwi
The steps to create a project, write source code, and simulate using Wokwi are as follows:
1. Create a New Project Using the ESP32-C3
a. Go to the Wokwi homepage: https://wokwi.com
b. Select ESP32
c. Select ESP32-C3
2. In source code editor, rename ino file if nessecessary (click to right arrow Library
Manager, select Rename). Change the ino file as follows:

void setup() {}
void loop() {}

3. Add assembly file (extension .S), click to the right arrow of Library Manager,
select New file ..., the file name match ino file name but with the extension .s (e.g.,
if the ino file is named sketch.ino, the assembly file should be named sketch.S)

4. The assembly program should follow the structure below:

Define the init function for Wokwi to execute the assembly program
.global init

(Optional) Use the .eqv directive to define constants
.eqv CONST1, ©x0001

https://wokwi.com/

(Optional) Use the .data directive to declare data in memory
.data

The .text directive marks the beginning of the instruction section
If there is no .data section, the .text directive is not necessary
.text
init:

The assembly program starts here!!!

5. Press the + button to add the necessary electronic components. Connect the
component pins to the appropriate pins of the ESP32-C3 board according to the
schematic diagram

6. Press the Start button to compile the code and run the simulation.

ESP32-C3 General Purpose Input/Output (GPI10O) Overview
The ESP32-C3 includes 22 General Purpose Input/Output (GPIO) pins, which can be
configured for output or input functions. Each GPIO pin can also perform other functions
(e.g., peripheral communication via the 12C protocol). The ESP32-C3 provides registers
for configuring GPIO functionality, typically set during initialization.
Key GP10O Registers
« GPIO_ENABLE_REG (GPIO output enable register)
o Address: 0x60004020
o Enables output functionality for GPIO pins.
o Bits 0to 21 correspond to GP1OO0 through GP1021.
o A Dbit value of 1 configures the corresponding GPIO pin as an output.
« GPIO_ENABLE_WI1TS REG (GPIO output enable set register)
o Address: 0x60004024
o Supports setting bits in the GPIO_ENABLE_REG register.
o A bit value of 1 sets the corresponding bit in GPIO_ENABLE_REG,
leaving other bits unchanged.
« GPIO_ENABLE_WI1TC_REG (GPIO output enable clear register)
o Address: 0x60004028
o Supports clearing bits in the GP1IO_ENABLE_REG register.
o A bit value of 1 clears the corresponding bit in GPIO_ENABLE_REG,
leaving other bits unchanged.
o« GPIO_IN_REG (GPIO input register)
o Address: 0x6000403C
o Reads the state of GPI1O pins configured as input.
o Bits 0to 21 correspond to GP1OO0 through GP10O21.
o Abitvalue of 1/0 indicates a high/low logic level on the corresponding GPI1O
pin.
« GPIO_OUT_REG (GPIO output register)
o Address: 0x60004004
o Configures output values for GPIO pins.

Notes

o Bits 0 to 21 correspond to GPIOO0 through GPI1021.
o A bit value of 1/0 sets the corresponding GPIO pin to a high/low logic level.
GPIO_OUT_WI1TS_REG (GPIO output set register)
o Address: 0x60004008
o Supports setting bits in the GPIO_OUT _REG register.
o A bit value of 1 sets the corresponding bit in GPIO_OUT_REG, leaving
other bits unchanged.
GPIO_OUT WI1TC_REG (GPIO output clear register)
o Address: 0x6000400C
o Supports clearing bits in the GPIO_OUT_REG register.
o A bit value of 1 clears the corresponding bit in GPIO_OUT_REG, leaving
other bits unchanged.
I0_MUX_GPIOn_REG (where nis 0to 21)
o Address: 0x60009004 + 4*n
o Configures the functionality of GPIO pins (GPIOO0 to GP1021).
o These registers are used to select functions and configure GPIO pin
operations.

Use GPIO_ENABLE WI1TS REG and GPIO_ENABLE_WI1TC_REG to
modify specific bits in the GPIO_ENABLE_REG, avoiding unintended changes
to unrelated bits.

Use GPIO_OUT _WITS REG and GPIO_OUT WITC _REG to modify
specific bits in the GPIO_OUT_REG, avoiding unintended changes to unrelated
bits.

Refer to the datasheet for detailed information about GPIO pin functions and select
appropriate configurations.

Students are advised to consult the documentation or datasheet for a deeper
understanding of these registers.

Home Assignment 1 - Turn LED On/Off

The following example demonstrates how to control an LED
to turn it on and off.
Circuit Diagram
The circuit consists of an LED with:

« Anode (positive terminal) connected to GP100.

o Cathode (negative terminal) connected to a 220

Ohm resistor, which is connected to GND.

o When GPIOO is at logic level 0, the LED is off.

o When GPIOO is at logic level 1, the LED lights up.
Use Wokwi to build the circuit as illustrated in the provided
diagram.

.global init

.eqv GPIO_ENABLE_REG, 0x60004020 # Register to configure GPIO pins as
input/output
.eqv GPIO_OUT_W1TS_REG, Ox60004008 # Register to set GPIO pins

init:
1i al, GPIO _ENABLE REG # Load register address to setup GPIO®
1i a2, oxo1 # Load the mask ©x01 for register GPIO ENABLE REG

sw a2, 0(al)

1i al, GPIO OUT W1TS REG # Load register to output GPIO®
1i a2, oxo1 # Load the mask ©x01 for register GPIO OUT W1TS REG
sw a2, 0(al)

Load the program into Wokwi, run and observe the result

Home Assignment 2 - Blink LED

This example demonstrates how to control an LED to blink. The circuit diagram is the
same as in Home Assignment 1. To create a blinking effect, the program alternates between
turning the LED on and off, with a delay in between.

Source code:

.global init

.eqv GPIO_ENABLE_REG, 0x60004020
.eqv GPIO OUT_WITS_REG, ©x60004003
.eqv GPIO_OUT_WITC_REG, ©x6000460C

init:
1i al, GPIO_ENABLE_REG
1i a2, oxo1
sw a2, 0(al)

main_loop:
1i al, GPIO OUT_WI1TS_REG
1i a2, oxe1l
sw a2, 0(al)
call delay_asm

1i al, GPIO_OUT_W1TC_REG
1li a2, oxe1

sw a2, 0(al)

call delay_asm

Jj main_loop

Delay
delay asm:
1i a3, ©
1i a4, 5000000
loop_delay:
addi a3, a3, 1
blt a3, a4, loop_delay
ret

Setup GPIOO as output

GPIO® -> HIGH

Delay

Clear GPIOO

Delay

Loop

counter
wait time (counting times)

Load the program into Wokwi, run and observe the result.

Home Assignment 3 - Show number in LED 7 segments

The following example illustrates how to
implement a circuit that displays the number 0
on a common anode 7-segment LED display.
The circuit setup is as shown in the provided
diagram. The LED segments a, b, c, d, e, f, g
are connected to GPIO pins GPIO0, GP101,
GP102, GPIO3, GPIO4, GPIO5, GPIOS,
respectively. These GPIO pins need to be
configured as output pins to send signals.

The GPIO pins GP104, GP105, GPI10O6, and GPIO7 have default functionality for the SPI
protocol. To output signals on these pins, the function must be selected using the
I0_MUX_GPIONn_REG register (n from 4 to 7).

Table 2-3. 10 MUX Pin Functions

Pin 10 MUX / 10 MUX Function 4

No. GPIO (o] Type S Type | 2 Type
Name

4 | GPIOO GPIOO /o/T | ePI0o | /00T

5 | GPIOT GPIOT I/o/T | GPIOT | 1/O/T £

6 GPIO2 GPIO2 I/o/T | 6PI02 | 1/0/T |(FSPIQ 1/0/T

8 | GPIO3 GPI03 . | I/O/T | GPIO3 | 1/O/T

9 | Groa | MTMS I GPIO4 | 1/0/T || FSPIHD n/0/T

10 | GPIO5 MTDI 1 GPIO5 | 1/0/T | FSPIWP 1/0/T

12 | GPIOB MTCK I GPIO6 | 1/0/T | FSPICLK | | 1/o/T

13 | GPIO7 (MTDO | | O/T GPIO7 | 1/0/T | FSPID 1/0/T

Register 5.21. I0_MUX_GPIOn_REG (n: 0-21) (0x0004+4*n)

>
o \)?Q,V §F ¢ & N
A D DR 4
SIS IS W R
S G S S S
& GGG
X 7 e 7 e s e 7 e e 7 7 7
& O R R

&

S S L7 PP O

|31 16|15|14 12|11 10‘9‘8‘7|6

|oooooooooooooooo|o| 00 |0x2[w[w[o|o

configuration must be set.

Source code:

.global init

.eqv GPIO_ENABLE_REG, 0x60004020 # Enable outpu GPIO
.eqv GPIO_OUT_REG, 0x60004004 # setup output

.eqv IO_MUX_GPIO4_REG, 0x60009014 # Setup function GPIO4
.eqv I0_MUX_GPIOS5_REG, 0x60009018 # Setup function GPIO5
.eqv IO_MUX_GPIO6_REG, 0x6000901C # Setup function GPIO6
.eqv IO_MUX_GPIO7_REG, 0x60009020 # Setup function GPIO7
.text
init:

1i al, GPIO_ENABLE_REG

1i a2, OxFF # output from GPIO® to GPIO7 (8 bits)

sw a2, 0(al) # setupt bits in GPIO_ENABLE_REG

7z /\O/\O/\O/
[2]=]

(o]0 o]0]Rese
The I0_MUX_GPIOn_MCU_SEL field (bits 12—14) is used to select the function for the
GPIOnN pin. This field must be set to a value of 1 to configure the pin as GPIO.

Note: When simulating with Wokwi, it is not necessary to configure the function for GP104,
GPI05, GPIO6, and GPIO7. However, when using a physical development board, this

setup function in GPIO4, GPIO5, GPIO6, GPIO7
in default, they are used for SPI function
we need to change to GPIO function

1i a2, ox1000

1i al, IO_MUX_GPIO4 REG
sw a2, 0(al)

1i al, IO _MUX_GPIOS5_REG
sw a2, 0(al)

1i al, IO_MUX_GPIO6_REG
sw a2, 0(al)

1i al, IO _MUX_GPIO7_REG
sw a2, 0(al)

al contains the address of state register GPIO
1i al, GPIO_OUT_REG

1i a2, oxcCeo

sw a2, 0(al) # Output to GPIO

Home Assignment 4 - Read states of switch / button

The following example demonstrates a circuit that
reads an input signal from GPIOO0 and controls the
LED on GPIOL.

The connection diagram is as illustrated below.

The GPIO_IN_REG register holds the input values
of the GPIO pins. By default, GPIO pins are
configured as input pins. However, to enable signal
input, the I0O_MUX_GPIOx_FUN_IE bit must be
setin the I0_MUX_GPIOx_REG register
corresponding to the GPIOXx pin.

Source code

.global init

.eqv GPIO OUT_WITS_REG, ©x60004008
.eqv GPIO_OUT_WITC_REG, ©x6000460C
.eqv GPIO_ENABLE_REG, 0x60004020
.eqv GPIO_IN REG, 0x6000403C

.eqv I0_MUX_GPIO@_REG, 0x60009004

set register

clear register

enable output register
state register GPIO
function register GPIOO

H R HF HH

init:
1i al, GPIO_ENABLE_REG # Set GPIO1 as input

1i a2, oxe2
sw a2, 0(al)

1i a1, I0_MUX_GPIO@®_REG # Enable GPIOO as input

1w a2, 9(al)

ori a2, a2, 0x200 # Set bit IO MUX_GPIO® FUN_IE
sw a2, 0(al)

loop:
1i al, GPIO_IN_REG # Read status of GPIO
1w a2, 9(al)
andi a3, a2, 0x01 # Check GPIOO
beq a3, zero, clear # If GPIO® = © => turn off LED
set:
1i al, GPIO_OUT_WATS REG # turn on LED: Set GPIO1 = 1
1i a2, 0x02
sw a2, 0(al)
j next
clear:
1li al, GPIO_OUT_WATC_REG # off LED: Clear GPIO1 = ©
1i a2, oxe2
sw a2, 0(al)
next:
j loop # Loop

Assignment 1

Create a project to implement and test Home Assignment 1. Update the source code to test
with other GPIO pins (GP102, GP103, GPIO4).

Assignment 2

Create a project to implement and test Home Assignment 2. Update the source code to test
with other GPIO pins (GP102, GPIO3, GP104) and adjust the LED blinking duration.

Assignment 3

Create a project to implement and test Home Assignment 3. Update the source code to
display different digits (from 0 to 9).

Assignment 4

Create a project to implement and test Home Assignment 4. Update the source code to use
other GPI0O pins (GP102, GPIO3, GPIO4) as signal input pins.

Assignment 5
Create a project to implement a circuit that counts from 0 to 9 on a 7-segment LED display

