Lab 12. Cache memory

Goal

After this laboratory exercise, students can understand the basic mechanics of cache

memory and the influence of parameters on the cache performance.

Assignments

Assignment 1 - Running the Data Cache Simulator tool

1. Open the program row-major.asm. This program will traverse a 16 by 16 element
integer matrix in row-major order, assigning elements the values 0 through 255 in
order. It performs the following algorithm:

for

for (col

data[row] [col] =

(row = 0;

row < 16; row++)
= 0; col < 16; col++)
value++;

2. Compile the program.
3. From the Tools menu, select Data Cache Simulator. A new frame will appear in

the middle of the screen.

| Block Replacement Policy

| Set size (blocks)

| Memory Access Count

| Cache Hit Count

Cache Hit Rate

B 4 Data Cache Simulation Tool, Version 1.2

Simulate and illustrate data cache performance
Cache Organization
w | Number of blocks

Placement Policy Direct Mapping

LRU

1| ¥ | Cache size (bytes)

w | Cache block size (words)

Cache Performance
o Cache Block Table
0 (block 0 at top)
O =empty
Cache Miss Count 0 .
E =hit
B =miss

Runtime Log

| Enabled

Tool Control

Connect to Program Reset

Close

This is a RARS Tool that will simulate the use and performance of cache memory when
the underlying RISC-V program executes. Notice its three major sections:

= Cache Organization: You can use the combo boxes to specify how the cache
will be configured for this run. Feel free to explore the different settings, but
the default is fine for now.

= Cache Performance: With each memory access during program execution,
the simulator will determine whether that access can be satisfied from
cache and update the performance display accordingly.

= Tool Control: These buttons perform generic control functions as described
by their labels

4. Click the tool's Connect to Program button. This causes the tool to register as an
observer of RISC-V memory and thus respond during program execution.

5. Back in RARS, adjust the Run Speed slider to 30 instructions per second. It is
located at the right side of the toolbar. This slows execution so you can watch the
Cache Performance animation.

6. In RARS, run the program using the Run toolbar button , the menu item or
keyboard shortcut. Watch the Cache Performance animate as it is updated with every
access to RISC-V memory.

7. What was the final cache hit rate? . With each miss, a block of 4
words are written into the cache. In a row-major traversal, matrix elements are
accessed in the same order they are stored in memory. Thus, each cache miss is
followed by 3 hits as the next 3 elements are found in the same cache block. This is
followed by another miss when Direct Mapping maps to the next cache block, and
the patterns repeats itself. So, 3 of every 4 memory accesses will be resolved in

cache.

8. Given that explanation, what do you predict the hit rate will be if the block size is
increased from 4 words to 8 words? . Decreased from 4 words to
2 words?

9. Verify your predictions by modifying the block size and re-running the program
from step 6.

NOTE: when you modify the Cache Organization, the performance values are
automatically reset (you can always use the tool's Reset button).

NOTE: You must reset the RISC-V program before you can re-run it.

NOTE: Feel free to adjust the Run Speed slider to maximum speed anytime you
want.

10. Repeat steps 2 through 10 for program column-major.asm. This program will
traverse a 16 by 16 element integer matrix in column-major order, assigning
elements the wvalues 0 through 255 in order. It performs the
following algorithm:

for (col = 0; col < 16; col++)
for (row = 0; row < 16; row++)
data[row] [col] = valuet++;
NOTE: You can leave the Cache Simulator in place, move it out of the way, or close
it. It will not interfere with the actions needed to open, assemble, or run this new
program and will remain connected to RISC-V memory. If you do not close the tool,
then skip steps 3 and 4.
11. What was the cache performance for this program? . The problem is
the memory locations are now accessed not sequentially as before, but each access

2

1516 words beyond the previous one (circularly). With the settings we've used, no
two consecutive memory accesses occur in the same block, so every access is a miss.
12. Change the block size to 16. Note this will reset the tool.
13. Create a second instance of the Cache Simulator by once again selecting Data Cache
Simulator from the Tools menu. Adjust the two frames so you can view both at the
same time. Connect the new tool instance to RISC-V, change its block size to 16 and

change its number of blocks to 16.

14.Re-run the program. What is the cache performance of the original tool instance?

. Block size 16 didn't help because there was still only one access to

each block, the initial miss, before that block was replaced with a new one. What is

the cache performance of the second tool instance?

. At this point,

the entire matrix will fit into cache and so once a block is read in it is never replaced.
Only the first access to a block results in a miss.

Assignment 2 - Running the Memory Reference Visualization tool

1. Open the program row-major.asm from the Lab12 folder.

2. Compile the program.

3. From the Tools menu, select Memory Reference Visualization. A new frame will

appear in the middle of the screen.

[

Visualizing memory reference patterns

Show unit boundaries (grid marks) v
Memory Words per Unit 1 v
Unit Width in Pixels 16 |«
Unit Height in Pixels 16 |+
Display Width in Pixels 256 |-
Display Height in Pixels 256 |-
Base address for display 0x10010000 (static data) |«
0 L
Counter value 10
Tool Control
Connect to Program Reset

Help Close

This tool will paint a grid unit each time the corresponding MIPS memory word is
referenced. The base address, the first static data segment (.data directive) word,
corresponds to the upper-left grid unit. Address correspondence continues in
rowmajor order (left to right, then next row down).
The color depends on the number of times the word has been referenced. Black is 0,
blue is 1, green is 2, yellow is 3 and 4, orange is 5 through 9, red is 10 or higher.

3

View the scale using the tool’s slider control. You can change the color (but not the

reference count) by clicking on the color patch.

4. Click the tool's Connect to Program button. This causes the tool to register as an
observer of RISC-V memory and thus respond during program execution.
Back in RARS, adjust the Run Speed slider to 30 instructions per second.

6. Run the program. Watch the tool animate as it is updated with every access to RISC-
V memory. Feel free to stop the program at any time.

7. Hopefully you observed that the animation sequence corresponded to the expected
memory access sequence of the row-major.asm program. If you have trouble seeing
the blue, reset the tool, move the slider to position 1, change the color to something
brighter, and re-run.

8. Repeat steps 2 through 7, for column-major.asm. You should observe that the
animation sequence corresponded to the expected memory access sequence of this
program.

9. Repeat again for fibonacci.asm to observe the animated pattern of memory
references. Adjust the run speed and re-run if necessary.

The Memory Reference Visualization tool could be useful in an operating systems course
to illustrate spatial and temporal locality and memory reference patterns in general.

o

