
1

Lab 11. Interrupts & IO programming

Goals

After this laboratory exercise, you should understand the basic principles of interrupts and

how interrupts can be used for programming. You should also know the difference between

polling and using interrupts and the relative merits of these methods.

Preparation

Polling or Interrupts

A computer can react to external events either by polling or by using interrupts. One method

is simpler, while the other one is more systematic and more efficient. You will study the

similarities and differences of these methods using a simple “toy” example program.

Each peripheral device connects to the CPU via a few ports. CPU uses address to find out

the respective port, and after that, CPU could read/write the new value to these ports to

get/control the device.

Home Assignment 1 – POLLING

Write a program using assembly language to

detect key pressed in Digi Lab Sim and print

the key number to console.

The program has an unlimited loop, to read the

scan code of key button. This is POLLING.

To use the key matrix1, you should:

1. Assign the expected row index into the byte at the address 0xFFFF0012

2. Read byte at the address 0xFFFF0014, to detect which key button was pressed.

Note: Run the program at the speed of 30 ins/s to avoid RARS stop working.

1 Key matrix animation: http://hackyourmind.org/public/images/keypad12keys_anim.gif

http://hackyourmind.org/public/images/keypad12keys_anim.gif

2

--
col 0x1 col 0x2 col 0x4 col 0x8
row 0x1 0 1 2 3
0x11 0x21 0x41 0x81
row 0x2 4 5 6 7
0x12 0x22 0x42 0x82
row 0x4 8 9 a b
0x14 0x24 0x44 0x84
row 0x8 c d e f
0x18 0x28 0x48 0x88
--
Command row number of hexadecimal keyboard (bit 0 to 3)
Eg. assign 0x1, to get key button 0,1,2,3
assign 0x2, to get key button 4,5,6,7
NOTE must reassign value for this address before reading,
eventhough you only want to scan 1 row
.eqv IN_ADDRESS_HEXA_KEYBOARD 0xFFFF0012

Receive row and column of the key pressed, 0 if not key pressed

3

Eg. equal 0x11, means that key button 0 pressed.
Eg. equal 0x28, means that key button D pressed.
.eqv OUT_ADDRESS_HEXA_KEYBOARD 0xFFFF0014

.text
main:
 li t1, IN_ADDRESS_HEXA_KEYBOARD
 li t2, OUT_ADDRESS_HEXA_KEYBOARD
 li t3, 0x08 # check row 4 with key C, D, E, F

polling:
 sb t3, 0(t1) # must reassign expected row
 lb a0, 0(t2) # read scan code of key button
print:
 li a7, 34 # print integer (hexa)
 ecall
sleep:
 li a0, 100 # sleep 100ms
 li a7, 32
 ecall
back_to_polling:
 j polling # continue polling

Home Assignment 2 – INTERRUPT

Introduction to interrupt and interrupt routine

Interrupts are mechanisms that allow peripheral devices to send notifications to the CPU

about events that need attention. When an interrupt occurs, the peripheral device sends a

signal to the CPU, when the CPU receives this signal, it will perform the following tasks in

the following order:

1. Back up the context of the current program.

2. Execute the interrupt service subroutine.

3. Restore the context and continue executing the main program.

Interrupts can occur from many sources: external interrupts from peripheral devices, timer

interrupts, software interrupts or exceptions.

The RISC-V ISA defines three levels of access privileges including User/Application,

Supervisor, and Machine. Access privileges define which resources (registers,

instructions, ...) can be accessed by software. This mechanism will limit the execution of

software and protect the system from software that intentionally performs unauthorized

operations. Machine privileges have the highest level of access, User/Application privileges

have the lowest level of access. RARS simulates the User/Application level.

Registers used for interrupt handling

The RISC-V architecture defines Control and Status Registers (CSRs) that indicate the state

of the CPU and allow software to control the behavior of the CPU. The RISC-V ISA also

includes a set of instructions that allow software to read and write the contents of the CSRs.

The CSRs related to interrupt handling are:

4

• mstatus: Status register contains fields providing information or control over the interrupt

handling mechanism. The UIE field (bit 0) enables or disables interrupts.

• mcause (Machine Interrupt Cause): Consisting of 2 fields: INTERRUPT (bit 31)

indicates whether the cause is an interrupt or an exception and the EXCCODE field (bits

0 to 30) indicates the cause of the interrupt (or exception).

• mtvec (Machine Trap Vector): Register containing information about the subroutine that

the CPU will execute when an interrupt occurs.

• mie (Machine Interrupt Enable): Register that sets whether to enable or disable specific

interrupt sources.

• mip (Machine Interrupt Pending): Register containing information about interrupts that

are not yet processed by the CPU.

• mepc (Machine Exception Program Counter): Register containing the value of the PC

register when an interrupt occurs.

Interrupt handling flow (For RARS emulator, User access privilege)

1. Declare the interrupt handling routine (Interrupt Service Routine - ISR), the content

of the ISR usually includes:

a. Save the registers used in the subroutine.

b. Classify the interrupt, depending on the interrupt type, perform the

corresponding processing.

c. Restore the saved registers.

d. Return to the main routine

2. Load the interrupt handling routine address into the mtvec register.

3. Depending on the program, set the interrupt source in the mie register.

5

4. Enable global interrupts, set the uie bit of the mstatus register.

5. Set up the simulation tool to enable interrupts (Keypad, Timer Tool, ...)

Note:

• RARS has renamed the CSRs registers to ustatus, ucause, utvec, uie, uip, uepc to

emphasize the simulation in User access mode.

• With emulators, it is recommended to press the “Connect to Program” button before

running the emulator. Otherwise, the interrupt event will not occur.

• Using breakpoints to stop the program when an interrupt occurs will not be effective,

you can use the ebreak instruction to pause the program.

RISC-V provides special instructions to manipulate CSRs:

• csrrc t0, fcsr, t1 Atomic Read / Clear CSR, read from the CSR into t0 and clear

bits of the CSR according to t1.

• csrrci t0, fcsr, 10 Atomic Read / Clear CSR Immediate, read from the CSR into

t0 and clear bits of the CSR according to a constant.

• csrrs t0, fcsr, t1 Atomic Read / Set CSR, read from the CSR into t0 and logical

or t1 into the CSR.

• csrrsi t0, fcsr, 10 Atomic Read / Set CSR Immediate, read from the CSR into t0

and logical or a constant into the CSR.

• csrrw t0, fcsr, t1 Atomic Read / Write CSR, read from the CSR into t0 and write

t1 into the CSR.

• csrrwi t0, fcsr, 10 Atomic Read / Write CSR Immediate, read from the CSR into

t0 and write a constant to the CSR.

Note:

• The immediate values in the above instructions are limited to the range of 5 bits

(from -16 to 15).

• CSRs are used as name or number in an instruction (for example ustatus(0), uie(4),

uepc(65), etc.)

• If the old value of CSR is not important, zero register can be used as the destination

register.

For example: csrrsi zero, uie, 1 => set the first bit and do not store old value of uie.

The example below illustrates the setup and handling of interrupts generated by the Keypad

tool. Read carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD 0xFFFF0012

.data

 message: .asciz "Someone's presed a button.\n"

MAIN Procedure

.text

6

main:

 # Load the interrupt service routine address to the UTVEC register

 la t0, handler

 csrrs zero, utvec, t0

 # Set the UEIE (User External Interrupt Enable) bit in UIE register

 li t1, 0x100

 csrrs zero, uie, t1 # uie - ueie bit (bit 8)

 # Set the UIE (User Interrupt Enable) bit in USTATUS register

 csrrsi zero, ustatus, 1 # ustatus - enable uie (bit 0)

 # Enable the interrupt of keypad of Digital Lab Sim

 li t1, IN_ADDRESS_HEXA_KEYBOARD

 li t3, 0x80 # bit 7 = 1 to enable interrupt

 sb t3, 0(t1)

 # ---

 # No-end loop, main program, to demo the effective of interrupt

 # ---

loop:

 nop

 # Delay 10ms

 li a7, 32

 li a0, 10

 ecall

 nop

 j loop

end_main:

Interrupt service routine

handler:

 # ebreak # Can pause the execution to observe registers

 # Saves the context

 addi sp, sp, -8

 sw a0, 0(sp)

 sw a7, 4(sp)

 # Handles the interrupt

 # Shows message in Run I/O

 li a7, 4

 la a0, message

 ecall

 # Restores the context

 lw a7, 4(sp)

7

 lw a0, 0(sp)

 addi sp, sp, 8

 # Back to the main procedure

 uret

Home Assignment 3 – INTERRUPT & STACK

The stack is used to save and restore the registers used in the interrupt service routine,

avoiding affecting the operation of the main procedure.

The program below performs the following functions:

1. The main procedure sets up an interrupt from the keypad device of the Digital Lab Sim

tool.

2. The main procedure prints a series of consecutive integers on the Run I/O screen.

3. Whenever the user presses one of the keys C, D, E or F, an interrupt is triggered, the

interrupt service routine prints the key code on the Run I/O screen.

Read carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD 0xFFFF0012

.eqv OUT_ADDRESS_HEXA_KEYBOARD 0xFFFF0014

.data

 message: .asciz "Key scan code: "

MAIN Procedure

.text

main:

 # Load the interrupt service routine address to the UTVEC register

 la t0, handler

 csrrs zero, utvec, t0

 # Set the UEIE (User External Interrupt Enable) bit in UIE register

 li t1, 0x100

 csrrs zero, uie, t1 # uie - ueie bit (bit 8)

 # Set the UIE (User Interrupt Enable) bit in USTATUS register

 csrrsi zero, ustatus, 1 # ustatus - enable uie (bit 0)

 # Enable the interrupt of keypad of Digital Lab Sim

 li t1, IN_ADDRESS_HEXA_KEYBOARD

 li t3, 0x80 # bit 7 = 1 to enable interrupt

 sb t3, 0(t1)

 # ---

 # Loop to print a sequence numbers

 # ---

 xor s0, s0, s0 # count = s0 = 0

loop:

8

 addi s0, s0, 1 # count = count + 1

prn_seq:

 addi a7, zero, 1

 add a0, s0, zero # Print auto sequence number

 ecall

 addi a7, zero, 11

 li a0, '\n' # Print EOL

 ecall

sleep:

 addi a7, zero, 32

 li a0, 300 # Sleep 300 ms

 ecall

 j loop

end_main:

Interrupt service routine

handler:

 # Saves the context

 addi sp, sp, -16

 sw a0, 0(sp)

 sw a7, 4(sp)

 sw t1, 8(sp)

 sw t2, 12(sp)

 # Handles the interrupt

prn_msg:

 addi a7, zero, 4

 la a0, message

 ecall

get_key_code:

 li t1, IN_ADDRESS_HEXA_KEYBOARD

 li t2, 0x88 # Check row 4 and re-enable bit 7

 sb t2, 0(t1) # Must reassign expected row

 li t1, OUT_ADDRESS_HEXA_KEYBOARD

 lb a0, 0(t1)

prn_key_code:

 li a7, 34

 ecall

 li a7, 11

 li a0, '\n' # Print EOL

 ecall

 # Restores the context

 lw t2, 12(sp)

 lw t1, 8(sp)

9

 lw a7, 4(sp)

 lw a0, 0(sp)

 addi sp, sp, 16

 # Back to the main procedure

 uret

Home Assignment 4 – Multiple Interrupts

In case multiple interrupts are enabled, when an interrupt occurs the CPU executes a

common interrupt service routine. Therefore, within the routine, it is necessary to

distinguish the interrupt source to perform the corresponding handling.

The ucause register provides information about the interrupt source. This register consists

of two fields:

• INTERRUPT (31st bit): Takes the value 1 if the cause is an interrupt, the value 0 if

the cause is an exception.

• EXCCODE (bits from 0 to 30): Indicates the cause of the interruption (interrupt

source), described in the following table.

This program performs the following functions:

1. The main procedure simultaneously triggers 2 interrupts from the keypad (Digital

Lab Sim) and from the timer (Timer Tool).

2. The main procedure runs an infinite loop.

3. When running the simulation, after each time interval or the user presses a button on

the keypad, the program prints out the corresponding message on the Run I/O screen.

Note: Timer Tool user guide

• The word at address 0xFFFF0018 returns the current value of the timer (in ms).

10

• The word at address 0xFFFF0020 contains the comparison value (in ms). An

interrupt occurs when the current value of the timer exceeds the comparison value.

• In the timer interrupt subroutine, the comparison value must be updated if the next

interrupt is to occur.

• The Timer Tool (illustrated below) is used to control the timer.

Read this source code carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD 0xFFFF0012

.eqv TIMER_NOW 0xFFFF0018

.eqv TIMER_CMP 0xFFFF0020

.eqv MASK_CAUSE_TIMER 4

.eqv MASK_CAUSE_KEYPAD 8

.data

 msg_keypad: .asciz "Someone has pressed a key!\n"

 msg_timer: .asciz "Time inteval!\n"

MAIN Procedure

.text

main:

 la t0, handler

 csrrs zero, utvec, t0

 li t1, 0x100

 csrrs zero, uie, t1 # uie - ueie bit (bit 8) - external interrupt

 csrrsi zero, uie, 0x10 # uie - utie bit (bit 4) - timer interrupt

 csrrsi zero, ustatus, 1 # ustatus - enable uie - global interrupt

 # ---

 # Enable interrupts you expect

 # ---

11

 # Enable the interrupt of keypad of Digital Lab Sim

 li t1, IN_ADDRESS_HEXA_KEYBOARD

 li t2, 0x80 # bit 7 of = 1 to enable interrupt

 sb t2, 0(t1)

 # Enable the timer interrupt

 li t1, TIMER_CMP

 li t2, 1000

 sw t2, 0(t1)

 # ---

 # No-end loop, main program, to demo the effective of interrupt

 # ---

loop:

 nop

 li a7, 32

 li a0, 10

 ecall

 nop

 j loop

end_main:

Interrupt service routine

handler:

 # Saves the context

 addi sp, sp, -16

 sw a0, 0(sp)

 sw a1, 4(sp)

 sw a2, 8(sp)

 sw a7, 12(sp)

 # Handles the interrupt

 csrr a1, ucause

 li a2, 0x7FFFFFFF

 and a1, a1, a2 # Clear interrupt bit to get the value

 li a2, MASK_CAUSE_TIMER

 beq a1, a2, timer_isr

 li a2, MASK_CAUSE_KEYPAD

 beq a1, a2, keypad_isr

 j end_process

timer_isr:

 li a7, 4

 la a0, msg_timer

12

 ecall

 # Set cmp to time + 1000

 li a0, TIMER_NOW

 lw a1, 0(a0)

 addi a1, a1, 1000

 li a0, TIMER_CMP

 sw a1, 0(a0)

 j end_process

keypad_isr:

 li a7, 4

 la a0, msg_keypad

 ecall

 j end_process

end_process:

 # Restores the context

 lw a7, 12(sp)

 lw a2, 8(sp)

 lw a1, 4(sp)

 lw a0, 0(sp)

 addi sp, sp, 16

 uret

Home Assignment 5 – Exception Handling

Exceptions are events generated by the CPU in response to exceptional conditions when

executing instructions. Exceptions often trigger a handling mechanism to ensure that the

exceptional conditions are handled before the CPU continues executing the program.

Exception handling is used to protect the system from executing invalid instructions.

Exception handling is similar with the interruption handling, including the following steps:

1. Save the program context.

2. Handle the exception condition.

3. Restore the context and continue program execution (Depending on the type of

exception, the system will decide whether to continue executing the program or not).

The following example illustrates the implementation of the try-catch-finally structure in

high-level programming languages to handle exceptions.

.data

 message: .asciz "Exception occurred.\n"

.text

main:

try:

 la t0, catch

13

 csrrw zero, utvec, t0 # Set utvec (5) to the handlers address

 csrrsi zero, ustatus, 1 # Set interrupt enable bit in ustatus (0)

 lw zero, 0 # Trigger trap for Load access fault

finally:

 li a7, 10 # Exit the program

 ecall

catch:

 # Show message

 li a7, 4

 la a0, message

 ecall

 # Since uepc contains address of the error instruction

 # Need to load finally address to uepc

 la t0, finally

 csrrw zero, uepc, t0

 uret

Assignment 1

Create a new project, type in, and build the program of Home Assignment 1. Run the

program step by step to understand each line of the source code. Upgrade the source code

so that it could detect all 16 key buttons, from 0 to F.

Assignment 2

Create a new project, type in, and build the program of Home Assignment 2. Run the

program step by step to understand each line of the source code.

Assignment 3

Create a new project, type in, and build the program of Home Assignment 3. Run the

program step by step to understand each line of the source code. Upgrade the source code

so that it could detect all 16 key buttons, from 0 to F.

Assignment 4

Create a new project, type in, and build the program of Home Assignment 4. Run the

program step by step to understand each line of the source code.

Assignment 5

Create a new project, type in, and build the program of Home Assignment 5. Run the

program step by step to understand each line of the source code.

Assignment 6: Software interrupt

Software interrupts can be triggered by setting the USIP bit in the uip register (It needs to

enable software interrupt by setting USIE bit in uie register in advance). Write a program

14

that raises software interrupt when an overflow occurs while adding two signed integers

(Lab 4). ISR will display a message in the console and then terminate the program.

Conclusion

Answer the following questions before ending the lab:

• What is Polling?

• What is Interrupt?

• What is Interrupt Service Routine?

• What are the advantages of Polling?

• What are the advantages of Interrupt?

• Distinguish between Interrupt, Exception and Trap?

