Lab 11. Interrupts & [0 programming

Goals

After this laboratory exercise, you should understand the basic principles of interrupts and
how interrupts can be used for programming. You should also know the difference between
polling and using interrupts and the relative merits of these methods.

Preparation

Polling or Interrupts

A computer can react to external events either by polling or by using interrupts. One method
is simpler, while the other one is more systematic and more efficient. You will study the
similarities and differences of these methods using a simple “toy” example program.

Each peripheral device connects to the CPU via a few ports. CPU uses address to find out
the respective port, and after that, CPU could read/write the new value to these ports to
get/control the device.

Home Assignment 1 - POLLING

Write a program using assembly language to
detect key pressed in Digi Lab Sim and print
Digital Lab Sim the key number to console.

o | 1+ | 2 | 5 | Theprogram has an unlimited loop, to read the
scan code of key button. This is POLLING.

§'J Digital Lab Sim, Version 1.0 (Didier Teifreto) X

4 5 6 7

8 9 a b
c d e f
Tool Control
Connect to Program [Reset | Help l Close

To use the key matrix*, you should:
1. Assign the expected row index into the byte at the address OxFFFF0012
2. Read byte at the address OxFFFF0014, to detect which key button was pressed.

Note: Run the program at the speed of 30 ins/s to avoid RARS stop working.

1 Key matrix animation: http://hackyourmind.org/public/images/keypad12keys anim.gif

http://hackyourmind.org/public/images/keypad12keys_anim.gif

IN_ADDRESS_HEXA_KEYBOARD

Address OxFFFF0012
7 6 5 4 3 2 1 0
i B
€]
@
Coll Col2 Col3 Col
Swi1 Sw2 SW3 SW4
= == = =
g [0 0} [0 0 [0 0+ Do
0 1 2 3
SW5 SW6 Swr SwW8
=l == =
Row? 1—0 o0— 1—0 0— o— |—0 o—
7 5 6 7
SWa SW10 SWi1 SW12
= = =
R [0 O [© O 0 O O O
M) 9 TA B
SW13 SWi4 SWi15 SW16
=t Iﬁd— &0_ |—"_‘—|0_
Rowt [~° e ©
[D E F
[

T Tl Tl el o
7 6 5 4 3 2 1 0
OUT_ADDRESS_HEXA_KEYBOARD

Address OXFFFF0014
__
col ox1 col ox2 col ox4 col ox8
row Ox1 (%} 1 2 3
ox11 ox21 ox41 ox81
row 0Ox2 4 5 6 7
0x12 0x22 0x42 0x82
row Ox4 8 9 a b
ox14 ox24 ox44 o0x84
row Ox8 C d e f
0x18 0x28 0x48 0x88
__

Command row number of hexadecimal keyboard (bit © to 3)
Eg. assign ox1, to get key button 0,1,2,3

assign ox2, to get key button 4,5,6,7

NOTE must reassign value for this address before reading,
eventhough you only want to scan 1 row

.eqv IN_ADDRESS HEXA_ KEYBOARD OxFFFFO012

Receive row and column of the key pressed, @ if not key pressed

Eg. equal 0x1ll, means that key button © pressed.
Eg. equal 0x28, means that key button D pressed.
.eqv OUT_ADDRESS_HEXA KEYBOARD OxFFFFo014

.text

main:
1i t1, IN _ADDRESS HEXA KEYBOARD
1i t2, OUT_ADDRESS HEXA KEYBOARD

1i t3, oxes # check row 4 with key C, D, E, F
polling:

sb t3, o(t1) # must reassign expected row

1b ae@, 0(t2) # read scan code of key button
print:

1i a7, 34 # print integer (hexa)

ecall
sleep:

1i a0, 100 # sleep 100ms

1li a7, 32

ecall
back_to polling:

Jj polling # continue polling

Home Assignment 2 - INTERRUPT

Introduction to interrupt and interrupt routine

Interrupts are mechanisms that allow peripheral devices to send notifications to the CPU
about events that need attention. When an interrupt occurs, the peripheral device sends a
signal to the CPU, when the CPU receives this signal, it will perform the following tasks in
the following order:

1. Back up the context of the current program.

2. Execute the interrupt service subroutine.

3. Restore the context and continue executing the main program.

Interrupts can occur from many sources: external interrupts from peripheral devices, timer
interrupts, software interrupts or exceptions.

The RISC-V ISA defines three levels of access privileges including User/Application,
Supervisor, and Machine. Access privileges define which resources (registers,
instructions, ...) can be accessed by software. This mechanism will limit the execution of
software and protect the system from software that intentionally performs unauthorized
operations. Machine privileges have the highest level of access, User/Application privileges
have the lowest level of access. RARS simulates the User/Application level.

Registers used for interrupt handling

The RISC-V architecture defines Control and Status Registers (CSRs) that indicate the state
of the CPU and allow software to control the behavior of the CPU. The RISC-V ISA also
includes a set of instructions that allow software to read and write the contents of the CSRs.
The CSRs related to interrupt handling are:

» mstatus: Status register contains fields providing information or control over the interrupt
handling mechanism. The UIE field (bit 0) enables or disables interrupts.

« mcause (Machine Interrupt Cause): Consisting of 2 fields: INTERRUPT (bit 31)
indicates whether the cause is an interrupt or an exception and the EXCCODE field (bits
0 to 30) indicates the cause of the interrupt (or exception).

» mtvec (Machine Trap Vector): Register containing information about the subroutine that
the CPU will execute when an interrupt occurs.

« mie (Machine Interrupt Enable): Register that sets whether to enable or disable specific
interrupt sources.

» mip (Machine Interrupt Pending): Register containing information about interrupts that
are not yet processed by the CPU.

» mepc (Machine Exception Program Counter): Register containing the value of the PC
register when an interrupt occurs.

31 30 23 22 21 20 19 18 17
[SD] WPRI [TSR[TW [TVM [MXR [SUM [MPRV |
1 8 1 1 1 1 1 1
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| XS[1:0] [FS[1:0] [MPP[1:0] | WPRI [SPP | MPIE | WPRI [SPIE [UPIE | MIE | WPRI [SIE | UIE |
2 2 2 2 1 1 1 1 1 1 1 11

Figure 3.6: Machine-mode status register (mstatus) for RV32.

XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
WIRI | MEIP | WIRI j SEIP [UEIP | MTIP j WIRI | STIP [UTIP | MSIP | WIRI [SSIP j USIP j
XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.11: Machine interrupt-pending register (mip).

XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
[WPRI [MEIE [WPRI [SEIE [UEIE | MTIE | WPRI [STIE | UTIE | MSIE | WPRI [SSIE | USIE |
XLEN-12 1

Figure 3.12: Machine interrupt-enable register (mie).

Interrupt handling flow (For RARS emulator, User access privilege)
1. Declare the interrupt handling routine (Interrupt Service Routine - ISR), the content
of the ISR usually includes:
a. Save the registers used in the subroutine.
b. Classify the interrupt, depending on the interrupt type, perform the
corresponding processing.

c. Restore the saved registers.
d. Return to the main routine

2. Load the interrupt handling routine address into the mtvec register.

3. Depending on the program, set the interrupt source in the mie register.

&

Enable global interrupts, set the uie bit of the mstatus register.
5. Set up the simulation tool to enable interrupts (Keypad, Timer Tool, ...)

Note:
e RARS has renamed the CSRs registers to ustatus, ucause, utvec, uie, uip, uepc to
emphasize the simulation in User access mode.
o With emulators, it is recommended to press the “Connect to Program” button before
running the emulator. Otherwise, the interrupt event will not occur.
e Using breakpoints to stop the program when an interrupt occurs will not be effective,
you can use the ebreak instruction to pause the program.

RISC-V provides special instructions to manipulate CSRs:

e csrrc t0, fesr, t1 Atomic Read / Clear CSR, read from the CSR into t0 and clear
bits of the CSR according to t1.

e csrrci t0, fesr, 10 Atomic Read / Clear CSR Immediate, read from the CSR into
t0 and clear bits of the CSR according to a constant.

e csrrs t0, fesr, t1 Atomic Read / Set CSR, read from the CSR into t0 and logical
or t1 into the CSR.

e csrrsi t0, fesr, 10 Atomic Read / Set CSR Immediate, read from the CSR into t0
and logical or a constant into the CSR.

o csrrw t0, fesr, t1 Atomic Read / Write CSR, read from the CSR into t0 and write
t1 into the CSR.

e csrrwi t0, fesr, 10 Atomic Read / Write CSR Immediate, read from the CSR into
t0 and write a constant to the CSR.

o The immediate values in the above instructions are limited to the range of 5 bits
(from -16 to 15).
o (SRs are used as name or number in an instruction (for example ustatus(0), uie(4),
uepc(63), etc.)
o [f'the old value of CSR is not important, zero register can be used as the destination
register.
For example: csrrsi zero, uie, 1 => set the first bit and do not store old value of uie.

The example below illustrates the setup and handling of interrupts generated by the Keypad
tool. Read carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD OxFFFF0012
.data
message: .asciz "Someone's presed a button.\n"
N e
MAIN Procedure
.
text

main:
Load the interrupt service routine address to the UTVEC register
1a t0, handler
csrrs zero, utvec, tO

Set the UEIE (User External Interrupt Enable) bit in UIE register

1i t1l, 0x100

csrrs zero, uie, ti # uie - ueie bit (bit 8)

Set the UIE (User Interrupt Enable) bit in USTATUS register
csrrsi zero, ustatus, 1 # ustatus - enable uie (bit 0)

Enable the interrupt of keypad of Digital Lab Sim

1i t1l, IN_ADDRESS_HEXA_ KEYBOARD

1i t3, 0x80 # bit 7 = 1 to enable interrupt

sb t3, 0(t1)

£ S T~

No-end loop, main program, to demo the effective of interrupt

£ S T~
loop:

nop

Delay 1@ms

1i a7, 32

1li a0, 10

ecall

nop

Jj loop
end_main:
-+ S T e
Interrupt service routine
-
handler:

ebreak # Can pause the execution to observe registers
Saves the context

addi sp, sp, -8

SwW a0, o(sp)

Sw a7, 4(sp)

Handles the interrupt
Shows message in Run I/O

1i a7, 4
la a0, message
ecall

Restores the context
1w a7, 4(sp)

1w a0, 9(sp)
addi sp, sp, 8

Back to the main procedure
uret

Home Assignment 3 - INTERRUPT & STACK

The stack is used to save and restore the registers used in the interrupt service routine,
avoiding affecting the operation of the main procedure.

The program below performs the following functions:

1. The main procedure sets up an interrupt from the keypad device of the Digital Lab Sim
tool.

2. The main procedure prints a series of consecutive integers on the Run 1/O screen.

3. Whenever the user presses one of the keys C, D, E or F, an interrupt is triggered, the
interrupt service routine prints the key code on the Run 1/O screen.

Read carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD OxFFFF0012
.eqv OUT_ADDRESS_HEXA_ KEYBOARD OxFFFF0014
.data
message: .asciz "Key scan code: "
Y
MAIN Procedure
£
.text
main:
Load the interrupt service routine address to the UTVEC register
1a t0, handler
csrrs zero, utvec, tO
Set the UEIE (User External Interrupt Enable) bit in UIE register
1i tl, 0x100
csrrs zero, uie, t1 # uie - ueie bit (bit 8)
Set the UIE (User Interrupt Enable) bit in USTATUS register
csrrsi zero, ustatus, 1 # ustatus - enable uie (bit 9)
Enable the interrupt of keypad of Digital Lab Sim
1i t1l, IN_ADDRESS_HEXA_KEYBOARD
1i t3, 0x80 # bit 7 = 1 to enable interrupt
sb t3, 0(t1)
g
Loop to print a sequence numbers
N
xor s@, sO, sO # count = s@ = 0O
loop:

1w a7, 4(sp)
1w a0, 0(sp)
addi sp, sp, 16

Back to the main procedure
uret

Home Assignment 4 - Multiple Interrupts

In case multiple interrupts are enabled, when an interrupt occurs the CPU executes a
common interrupt service routine. Therefore, within the routine, it is necessary to
distinguish the interrupt source to perform the corresponding handling.
The ucause register provides information about the interrupt source. This register consists
of two fields:
e INTERRUPT (31% bit): Takes the value 1 if the cause is an interrupt, the value 0 if
the cause is an exception.
e EXCCODE (bits from 0 to 30): Indicates the cause of the interruption (interrupt
source), described in the following table.

mcause fields Cause
INTERRUPT EXCCODE)

1 0 User software interrupt

1 1 Supervisor software interrupt

1 2 Reserved for future standard use

1 3 Machine software interrupt

1 4 User timer interrupt

1 5) Supervisor timer interrupt

1 6 Reserved for future standard use

1 7 Machine timer interrupt

1 8 User external interrupt

1 9 Supervisor external interrupt

1 10 Reserved for future standard use

1 11 Machine external interrupt

1 12-15 Reserved for future standard use

1 > 16 Reserved for platform use

This program performs the following functions:
1. The main procedure simultaneously triggers 2 interrupts from the keypad (Digital
Lab Sim) and from the timer (Timer Tool).
2. The main procedure runs an infinite loop.
3. When running the simulation, after each time interval or the user presses a button on
the keypad, the program prints out the corresponding message on the Run 1/O screen.

Note: Timer Tool user guide
e The word at address OxFFFF0018 returns the current value of the timer (in ms).

The word at address OXxFFFF0020 contains the comparison value (in ms). An
interrupt occurs when the current value of the timer exceeds the comparison value.

In the timer interrupt subroutine, the comparison value must be updated if the next
interrupt is to occur.
The Timer Tool (illustrated below) is used to control the timer.

B, Timer Tool, Version 1.0 (Zachary Selk) e

Connect to Program l Reset I Help] Close

Timer Tool

00:00.00 Play Pause

Tool Control

Read this source code carefully and understand how the program works.

.eqv IN_ADDRESS_HEXA_KEYBOARD OxFFFFO012
.eqv TIMER_NOW OxFFFFo018
.eqv TIMER_CMP OxFFFF0020
.eqv MASK_CAUSE_TIMER 4
.eqv MASK_CAUSE_KEYPAD 8
.data
msg_keypad: .asciz "Someone has pressed a key!\n"
msg_timer: .asciz "Time intevall!\n"
e
MAIN Procedure
e
.text
main:
1a t0, handler
csrrs zero, utvec, to
1i t1, 0x100
csrrs zero, uie, ti1 # uie - ueie bit (bit 8) - external interrupt
csrrsi zero, uie, 0x10 # uie - utie bit (bit 4) - timer interrupt
csrrsi zero, ustatus, 1 # ustatus - enable uie - global interrupt
. g gy s
Enable interrupts you expect
N

10

ecall

Set cmp to time + 1000

1i
1w
addi
1i
sw

j

keypad_isr:
1i
1a
ecall

J

end_process:

a0,
al,
al,
ao,
al,

end_|

a7,
a0,

end_|

TIMER_NOW
0(ao0)
al, 1000
TIMER_CMP
0(ao0)

process

4
msg_keypad

process

Restores the context

1w
1w
1w
1w
addi
uret

a7,
a2,
al,
a0,
Sp,

12(sp)
8(sp)
4(sp)
9(sp)
sp, 16

Home Assignment 5 - Exception Handling

Exceptions are events generated by the CPU in response to exceptional conditions when
executing instructions. Exceptions often trigger a handling mechanism to ensure that the
exceptional conditions are handled before the CPU continues executing the program.
Exception handling is used to protect the system from executing invalid instructions.
Exception handling is similar with the interruption handling, including the following steps:
1. Save the program context.

2. Handle the exception condition.
3. Restore the context and continue program execution (Depending on the type of
exception, the system will decide whether to continue executing the program or not).

The following example illustrates the implementation of the try-catch-finally structure in

high-level programming languages to handle exceptions.

.data
message:
.text
main:
try:
1a

.asciz "Exception occurred.\n"

t0, catch

12

csrrw zero, utvec, t@ # Set utvec (5) to the handlers address
csrrsi zero, ustatus, 1 # Set interrupt enable bit in ustatus (©)

lw zero, © # Trigger trap for Load access fault
finally:

1li a7, 10 # Exit the program

ecall
catch:

Show message

1li a7, 4

la a0, message

ecall

Since uepc contains address of the error instruction

Need to load finally address to uepc

la t@, finally

csrrw zero, uepc, to

uret

Assignment 1

Create a new project, type in, and build the program of Home Assignment 1. Run the
program step by step to understand each line of the source code. Upgrade the source code
so that it could detect all 16 key buttons, from 0 to F.

Assignment 2

Create a new project, type in, and build the program of Home Assignment 2. Run the
program step by step to understand each line of the source code.

Assignment 3

Create a new project, type in, and build the program of Home Assignment 3. Run the
program step by step to understand each line of the source code. Upgrade the source code
so that it could detect all 16 key buttons, from 0 to F.

Assignment 4

Create a new project, type in, and build the program of Home Assignment 4. Run the
program step by step to understand each line of the source code.

Assignment 5

Create a new project, type in, and build the program of Home Assignment 5. Run the
program step by step to understand each line of the source code.

Assignment 6: Software interrupt

Software interrupts can be triggered by setting the USIP bit in the uip register (It needs to
enable software interrupt by setting USIE bit in uie register in advance). Write a program

13

that raises software interrupt when an overflow occurs while adding two signed integers
(Lab 4). ISR will display a message in the console and then terminate the program.

Conclusion

Answer the following questions before ending the lab:
What is Polling?

What is Interrupt?

What is Interrupt Service Routine?

What are the advantages of Polling?

What are the advantages of Interrupt?

Distinguish between Interrupt, Exception and Trap?

14

