Lab 10. Peripheral devices

Goals

After this laboratory excersice, students should understand the method to control peripheral
devices via simulation tools.

Literature

How does the CPU communicate with input and output devices such as the monitor or
keyboard?

There are several ways. Intel machines have special instructions named in and out that
communicate with I/O ports. These instructions are usually disabled for ordinary users, but
they are used internally for communicating with 1/O devices. This is called port-mapped
I/0. However, we are going to look at a different method in which 1/O devices have access
to memory. The CPU can place data in memory that can be read by the 1/O devices;
likewise, the I/O devices can place data in memory for the CPU. This is called memory-
mapped 1/0 or MMIO.

Home Assignment 1 - LED PORT

Write a program using assembly language to show numbers from 0 to F to the 7-segment
LED:s.

B/, Digital Lab Sim, Version 1.0 (Didier Teifreto) x To open the 7-segment LEDs, click
Digital Lab Sim Tools/Digital Lab Sim at the menu bar.

o | v | 2 | 3 | OpenHelptounderstand how to manipulate the
7-segment LEDs.

4 5 6 7

8 9 a b

c d e f

Tool Control

Connect to Program [Reset | Help l Close

T —
1 a
7 6 5 4 3 2 1 0 f b
Byte at the address OxFFFF0010 N g]c
e
¢)]

.eqv SEVENSEG LEFT OxFFFF0011 # Address of the LED on the left
Bit @ = segment a
Bit 1 = segment b
#
Bit 7 = dot sign
.eqv SEVENSEG _RIGHT ©xFFFFo010 # Address of the LED on the right
.text
main:
1i 20, 0xe6 # Set value for 7 segments
jal SHOW_7SEG_LEFT # Show the result
1i a0, Ox3F # Set value for 7 segments
jal SHOW_7SEG_RIGHT # Show the result
exit:
1i a7, 10
ecall
end_main:
- T

Function SHOW_7SEG _LEFT : Turn on/off the 7seg
param[in] a@ value to shown

remark t0@ changed
£
SHOW_7SEG_LEFT:

1i t0, SEVENSEG_LEFT # Assign port's address

sb a0, 0(te) # Assign new value

Jr ra
£

Function SHOW_7SEG_RIGHT : Turn on/off the 7seg
param[in] a@ value to shown

remark t0@ changed
-
SHOW_7SEG_RIGHT:

1i t@, SEVENSEG_RIGHT # Assign port's address

sb a@, 0(te) # Assign new value

jr ra

Home Assignment 2 - BITMAP DISPLAY

Bitmap Display is similar with a graphic monitor, in which Windows OS draws windows,
start button... To do that, developers should calculate color of all bitmap pixels on thee

2

screen and store these color value to the screen memory. Wherever we change a value in
screen memory, the color of the respective pixel on the screen will be changed.

In RARS, in the menu bar, click Tools / Bitmap Display to open the screen simulator.

0

R

Unit Width in Pixels

| Unit Height in Pixels

Display Width in Pixels

Display Height in Pixels

Base address for display |0x10010000 (static data) | ¥

Disconnect from Program

R G B

00

FF

00

00

00

FF

00

00

00

00

FF

FF

Bitmap w

32 |-

32 |~
256 |v

256 |w.

Tool Control

Reset Help Close

Each rectangular unit on the display

00 | 0x10010000 - pixel 0 represents one memory word in a contiguous
00 | 0x10010004 - pixel 1 address starting with the specified base

00 | 0x10010008 - pixel 2

address (in above figure, base address is
0x10010000).

FF | 0x1001000C - pixel 3

The value stored in that word will be interpreted as a 24-bit RGB.

.eqv MONITOR_SCREEN ©x10010000
.eqv RED
.eqv GREEN
.eqv BLUE
.eqv WHITE
.eqv YELLOW
.text

1i

1i
Sw

1i
Sw

ao,

to,
to,

to,
to,

OX00F F0000
OX0Q000FFo0
Ox0000OOF F
OXQOFFFFFF
OxQOFFFF00

MONITOR_SCREEN

RED
0(a0)

GREEN
4(ao0)

Start address of the bitmap display
Common color values

Load address of the display

1i
SW

1i
SW

1i
SwW

to,
to,

to,
to,

to,
to,

BLUE
8(a0)

WHITE
12(a@)

YELLOW
32(a0)

Home Assignment 3 - KEYBOARD and DISPLAY MMIO

Use this program to simulate Memory-Mapped 1/0 (MMIO) for a keyboard input device
and character display output device. It may be run either from RARS' Tools menu or as a

stand-alone application.

While the tool is connected to the program, each keystroke in the text area causes the
corresponding ASCII code to be placed in the Receiver Data register (low-order byte of
memory word 0xffff0004), and the Ready bit to be set to 1 in the Receiver Control register
(low-order bit of Oxffff0000). The Ready bit is automatically reset to O when the program

reads the Receiver Data using an 'lw" instruction.

Riacedvar contral
(RO

Receser data
(Dt HO004)

Transmithar cantrol
[xFIFODOE)

Transmither data
(e A000C)

Unused 1 1

Intarmigt i t Fiaacy

anable

Urused 8

Fasceivod bytn

Unused 1

Intarmuipt i t Fiaacy

anable

Urnised 8

Transmitted byte

.eqv KEY_CODE OxFFFFo004
.eqv KEY_READY ©0xFFFF0000

.eqv DISPLAY_CODE OxFFFFo00eC
.eqv DISPLAY_READY OxFFFF0008

.text
1i
1i
1i
1i

a0,
al,
so,
sl,

KEY_CODE
KEY_READY
DISPLAY_CODE
DISPLAY_READY

ASCII code from keyboard, 1 byte
=1 if has a new keycode ?
Auto clear after 1w

ASCII code to show, 1 byte
=1 if the display has already to do
Auto clear after sw

loop:

WaitForKey:

1w t1, 0(al) # t1 = [al] = KEY_READY

beq tl, zero, WaitForKey # if tl == @ then Polling
ReadKey:

1w to, 0(a0) # t0 = [a@] = KEY_CODE
WaitForDis:

1w t2, 0(s1) # t2 = [s1] = DISPLAY_READY

beq t2, zero, WaitForDis # if t2 == @ then polling
Encrypt:

addi to, to, 1 # change input key
ShowKey:

Sw to, 0(s0) # show key

Jj loop

The expected result of the execution:

R
Keyboard and Display MMIO Simulator

DISPLAY: Store to Transmitter Data 0xiTif000c, cursor 5, area 95 x 10

Ifmmp

Fort ¥|DAD |Fixed transmitter delay, select using slider - I]elfl‘lennlh:ﬁmslrllﬂlon executions

KEYBOARD: Characters typed here are stored to Receiver Data 0xfTfif0004
Hello

Tool Control

Disconnect fiom Program Reset Help Close

Assignment 1

Implement the program in Home Assignment 1, change the values so that the last two digits
of StudentID will be displayed on the LEDs.

Assignment 2

Write a program that lets user enter a character from the keyboard and the program will
print the last two digits of the ASCII code of the characters.

Assignment 3

Implement the program in Home Assignment 2, and then update the code so that it can
draw a chess board.

Assignment 4

Implement the program in Home Assignment 3, then update the code so that it can be
executed as follows:

Enter a lowercase character => Display the corresponding uppercase character.

Enter an uppercase character => Display the corresponding lowercase character.

Enter a digit => Display the same digit

Enter another character => Display “*”

The program will be exited if “exit” is entered.

Assignment 5

Write a program that allows the user to enter 2 points with coordinates (x1, y1) and (x2,
y2) (x1 is different from x2 and y1 is different from y2), draw and color a rectangle with 2
corners being the 2 entered points with a red border 1 unit wide and a green background.
For example, with (x1, y1) = (3, 3) and (x2, y2) = (18, 11), or (x1, y1) = (3, 11) and (x2,
y2) = (18, 3), we will have the result as the following figure.

