
1

Lab 10. Peripheral devices

Goals

After this laboratory excersice, students should understand the method to control peripheral

devices via simulation tools.

Literature

How does the CPU communicate with input and output devices such as the monitor or

keyboard?

There are several ways. Intel machines have special instructions named in and out that

communicate with I/O ports. These instructions are usually disabled for ordinary users, but

they are used internally for communicating with I/O devices. This is called port-mapped

I/O. However, we are going to look at a different method in which I/O devices have access

to memory. The CPU can place data in memory that can be read by the I/O devices;

likewise, the I/O devices can place data in memory for the CPU. This is called memory-

mapped I/O or MMIO.

Home Assignment 1 – LED PORT

Write a program using assembly language to show numbers from 0 to F to the 7-segment

LEDs.

To open the 7-segment LEDs, click

Tools/Digital Lab Sim at the menu bar.

Open Help to understand how to manipulate the

7-segment LEDs.

2

.eqv SEVENSEG_LEFT 0xFFFF0011 # Address of the LED on the left
 # Bit 0 = segment a
 # Bit 1 = segment b
 # ...
 # Bit 7 = dot sign
.eqv SEVENSEG_RIGHT 0xFFFF0010 # Address of the LED on the right

.text
main:
 li a0, 0x06 # Set value for 7 segments
 jal SHOW_7SEG_LEFT # Show the result
 li a0, 0x3F # Set value for 7 segments
 jal SHOW_7SEG_RIGHT # Show the result
exit:
 li a7, 10
 ecall
end_main:

Function SHOW_7SEG_LEFT : Turn on/off the 7seg
param[in] a0 value to shown
remark t0 changed

SHOW_7SEG_LEFT:
 li t0, SEVENSEG_LEFT # Assign port's address
 sb a0, 0(t0) # Assign new value
 jr ra

Function SHOW_7SEG_RIGHT : Turn on/off the 7seg
param[in] a0 value to shown
remark t0 changed

SHOW_7SEG_RIGHT:
 li t0, SEVENSEG_RIGHT # Assign port's address
 sb a0, 0(t0) # Assign new value
 jr ra

Home Assignment 2 – BITMAP DISPLAY

Bitmap Display is similar with a graphic monitor, in which Windows OS draws windows,

start button… To do that, developers should calculate color of all bitmap pixels on thee

• g f e d c b a Byte at the address 0xFFFF0010

 7 6 5 4 3 2 1 0

3

screen and store these color value to the screen memory. Wherever we change a value in

screen memory, the color of the respective pixel on the screen will be changed.

In RARS, in the menu bar, click Tools / Bitmap Display to open the screen simulator.

Each rectangular unit on the display

represents one memory word in a contiguous

address starting with the specified base

address (in above figure, base address is

0x10010000).

The value stored in that word will be interpreted as a 24-bit RGB.

.eqv MONITOR_SCREEN 0x10010000 # Start address of the bitmap display
.eqv RED 0x00FF0000 # Common color values
.eqv GREEN 0x0000FF00
.eqv BLUE 0x000000FF
.eqv WHITE 0x00FFFFFF
.eqv YELLOW 0x00FFFF00
.text
 li a0, MONITOR_SCREEN # Load address of the display

 li t0, RED
 sw t0, 0(a0)

 li t0, GREEN
 sw t0, 4(a0)

0 R G B

00 FF 00 00 0x10010000 - pixel 0

00 00 FF 00 0x10010004 - pixel 1

00 00 00 00 0x10010008 - pixel 2

00 FF FF FF 0x1001000C - pixel 3

4

 li t0, BLUE
 sw t0, 8(a0)

 li t0, WHITE
 sw t0, 12(a0)

 li t0, YELLOW
 sw t0, 32(a0)

Home Assignment 3 – KEYBOARD and DISPLAY MMIO

Use this program to simulate Memory-Mapped I/O (MMIO) for a keyboard input device

and character display output device. It may be run either from RARS' Tools menu or as a

stand-alone application.

While the tool is connected to the program, each keystroke in the text area causes the

corresponding ASCII code to be placed in the Receiver Data register (low-order byte of

memory word 0xffff0004), and the Ready bit to be set to 1 in the Receiver Control register

(low-order bit of 0xffff0000). The Ready bit is automatically reset to 0 when the program

reads the Receiver Data using an 'lw' instruction.

.eqv KEY_CODE 0xFFFF0004 # ASCII code from keyboard, 1 byte
.eqv KEY_READY 0xFFFF0000 # =1 if has a new keycode ?
 # Auto clear after lw

.eqv DISPLAY_CODE 0xFFFF000C # ASCII code to show, 1 byte
.eqv DISPLAY_READY 0xFFFF0008 # =1 if the display has already to do
 # Auto clear after sw

.text
 li a0, KEY_CODE
 li a1, KEY_READY
 li s0, DISPLAY_CODE
 li s1, DISPLAY_READY

5

loop:
WaitForKey:
 lw t1, 0(a1) # t1 = [a1] = KEY_READY
 beq t1, zero, WaitForKey # if t1 == 0 then Polling
ReadKey:
 lw t0, 0(a0) # t0 = [a0] = KEY_CODE
WaitForDis:
 lw t2, 0(s1) # t2 = [s1] = DISPLAY_READY
 beq t2, zero, WaitForDis # if t2 == 0 then polling
Encrypt:
 addi t0, t0, 1 # change input key
ShowKey:
 sw t0, 0(s0) # show key
 j loop

The expected result of the execution:

Assignment 1

Implement the program in Home Assignment 1, change the values so that the last two digits

of StudentID will be displayed on the LEDs.

Assignment 2

Write a program that lets user enter a character from the keyboard and the program will

print the last two digits of the ASCII code of the characters.

Assignment 3

Implement the program in Home Assignment 2, and then update the code so that it can

draw a chess board.

6

Assignment 4

Implement the program in Home Assignment 3, then update the code so that it can be

executed as follows:

Enter a lowercase character => Display the corresponding uppercase character.

Enter an uppercase character => Display the corresponding lowercase character.

Enter a digit => Display the same digit

Enter another character => Display “*”

The program will be exited if “exit” is entered.

Assignment 5

Write a program that allows the user to enter 2 points with coordinates (x1, y1) and (x2,

y2) (x1 is different from x2 and y1 is different from y2), draw and color a rectangle with 2

corners being the 2 entered points with a red border 1 unit wide and a green background.

For example, with (x1, y1) = (3, 3) and (x2, y2) = (18, 11), or (x1, y1) = (3, 11) and (x2,

y2) = (18, 3), we will have the result as the following figure.

