
Hanoi University of Science and Technology
School of Information and Communications Technology

1

Lab 07. Subroutine Call and Passing Parameters
Using the Stack

Goals

After this lab session, students will understand how to call subroutines and how the stack

mechanism works. Additionally, students will be able to write their own subroutines that

use the stack for passing parameters and returning results.

Subroutine Call

A procedure (subroutine) is a block of code that performs a specific task and may return

one or more results based on input parameters. When the subroutine finishes, the

processor returns to the location of the subroutine call to continue executing the next

instructions.

In assembly programming, a subroutine is typically associated with a label to mark the

starting address of the subroutine. There are two instructions used when working with

subroutines:

▪ jal rd, label (jump and link): This saves the address of the next instruction

(pc + 4) into the rd register and jumps to the instruction at the label. This address

will be used to return to the main program after the subroutine finishes. The

pseudo-instruction jal label (equivalent to jal ra, label) saves the return

address in the ra register, which is commonly used to call a subroutine.

▪ jalr rd, rs1, imm (jump and link register): This saves the address of the

next instruction (pc + 4) into the rd register and jumps to the instruction at

address rs1 + imm. The pseudo-instruction jr ra (equivalent to jalr zero,
ra, 0) jumps to the address stored in the ra register and is commonly used to

return to the main program.

Relationship between the main program and a procedure.

Hanoi University of Science and Technology
School of Information and Communications Technology

2

Assignments at Home and at Lab

Home Assignment 1

The program below illustrates how to declare and use the abs function to calculate the

absolute value of an integer. The function uses two registers: a0 holds the input

parameter and s0 holds the result. Read the program carefully to understand how to

declare and call the subroutine.

Laboratory Exercise 7 Home Assignment 1
.text
main:
 li a0, -45 # load input parameter
 jal abs # jump and link to abs procedure

 li a7, 10 # terminate
 ecall
end_main:
--
function abs
param[in] a0 the interger need to be gained the absolute
value
return s0 absolute value
--
abs:
 sub s0, zero, a0 # put -a0 in s0; in case a0 < 0
 blt a0, zero, done # if a0<0 then done
 add s0, a0, zero # else put a0 in s0
done:
 jr ra

Home Assignment 2
In this example, the max subroutine is declared and used to find the largest element

among three integers. The parameters are passed to the subroutine via the a0, a1, and a2

registers, and the result is stored in the s0 register. Read the program carefully to

understand how to declare and call the subroutine.

Laboratory Exercise 7, Home Assignment 2
.text
main:
 li a0, 2 # load test input
 li a1, 6
 li a2, 9
 jal max # call max procedure

 li a7, 10 # terminate
 ecall
end_main:

--
Procedure max: find the largest of three integers
param[in] a0 integers
param[in] a1 integers
param[in] a2 integers

Hanoi University of Science and Technology
School of Information and Communications Technology

3

return s0 the largest value
--
max:
 add s0, a0, zero # copy a0 in s0; largest so far
 sub t0, a1, s0 # compute a1 - s0
 blt t0, zero, okay # if a1 - v0 < 0 then no change
 add s0, a1, zero # else a1 is largest thus far
okay:
 sub t0, a2, s0 # compute a2 - v0
 blt t0, zero, done # if a2 - v0 <0 then no change
 add s0, a2, zero # else a2 is largest overall
done:
 jr ra # return to calling program

Home Assignment 3

Support:

Support: Stack memory operates arccording to the Last In First Out (LIFO) principle

and is usually managed by the sp (stack pointer) register. The sp register stores the

address of the top element of the stack and is used for two operations: push and pop.

Using the Stack:

1. Create space to store the contents of one or more registers (reduce the value of the

sp register by the required number of bytes).

2. Store the contents of the necessary registers into the stack (using the sw

instruction).

3. Execute the program that uses these registers.

4. Restore the original values of the registers (using the lw instruction).

5. Return the allocated stack memory by restoring the original value of the sp

register.

Note that in RISC-V, the bottom of the stack has the highest address.

 Stack before the push operation Stack after the push operation

The assembly program below demonstrates how to use the stack with the push and pop

operations, which are implemented by the lw and sw instructions. The values of the two

registers s0 and s1 will be swapped using the stack.

Laboratory Exercise 7, Home Assignment 3
.text
push:
 addi sp, sp, -8 # adjust the stack pointer
 sw s0, 4(sp) # push s0 to stack

Hanoi University of Science and Technology
School of Information and Communications Technology

4

 sw s1, 0(sp) # push s1 to stack
work:
 nop
 nop
 nop
pop:
 lw s0, 0(sp) # pop from stack to s0
 lw s1, 4(sp) # pop from stack to s1
 addi sp, sp, 8 # adjust the stack pointer

Support:

According to RISC-V conventions, input parameters are typically stored in the a0-a7

registers, while return values are stored in the a0 register. There are some questions to

address:

1. What happens if a function has more than 8 input parameters or returns more than

one value?

2. What happens if a function needs to save its input parameters and state to call

another function?

3. What happens if a program has too many local variables to be stored in 32

registers?

Solution: Use the stack memory.

Caller and Callee Conventions

1. Caller Rule: Before calling the callee, the caller saves the contents of the

registers containing the input parameters and its temporary registers onto the

stack (a0-a7 and t0-t6), allowing the callee to use these registers. After the

callee finishes, the caller restores the contents of the saved registers.

2. Callee Rule: Before executing, the callee must save the contents of the registers

it wants to use (s0-s11 and ra). Before returning to the caller, the callee must

restore the contents of the previously saved registers.

These conventions ensure that the subroutine can use as many registers as possible to

serve the program.

Note for Nested Procedures:

Hanoi University of Science and Technology
School of Information and Communications Technology

5

When calling the xyz subroutine, you must save the ra register (which currently holds

the return address of the abc function) onto the stack before jumping to xyz. Otherwise,

the current value of the ra register will be overwritten by the return address of the xyz

subroutine, and the function will not be able to return to the main program.

Home Assignment 4

The following program uses a recursive algorithm to calculate n!. Read the program

carefully to understand how the stack is used to store and restore registers.

Laboratory Exercise 7, Home Assignment 4
.data
message: .asciz "Ket qua tinh giai thua la: "

.text
main:
 jal WARP

print:
 add a1, s0, zero # a0 = result from N!
 li a7, 56
 la a0, message
 ecall

quit:
 li a7, 10 # terminate
 ecall
end_main:

--
Procedure WARP: assign value and call FACT
--
WARP:
 addi sp, sp, -4 # adjust stack pointer
 sw ra, 0(sp) # save return address

 li a0, 3 # load test input N
 jal FACT # call fact procedure

 lw ra, 0(sp) # restore return address
 addi sp, sp, 4 # return stack pointer
 jr ra
wrap_end:

--
Procedure FACT: compute N!
param[in] a0 integer N
return s0 the largest value
--
FACT:
 addi sp, sp, -8 # allocate space for ra, a0 in stack
 sw ra, 4(sp) # save ra register
 sw a0, 0(sp) # save a0 register

 li t0, 2
 bge a0, t0, recursive
 li s0, 1 # return the result N!=1
 j done

Hanoi University of Science and Technology
School of Information and Communications Technology

6

recursive:
 addi a0, a0, -1 # adjust input argument
 jal FACT # recursive call
 lw s1, 0(sp) # load a0
 mul s0, s0, s1
done:
 lw ra, 4(sp) # restore ra register
 lw a0, 0(sp) # restore a0 register
 addi sp,sp,8 # restore stack pointer
 jr ra # jump to caller
fact_end:

Assignment 1

Create a project to implement Home Assignment 1. Compile and simulate it. Change

the program parameters (register a0) and observe the execution results. Run the program

in the single-step mode and pay attention to the changes in registers, especially the pc

and ra registers.

Assignment 2

Create a project to implement Home Assignment 2. Compile and simulate it. Change

the program parameters (registers a0, a1, a2) and observe the execution results. Run the

program in the single-step mode and pay attention to the changes in registers, especially

the pc and ra registers.

Assignment 3

Create a project to implement Home Assignment 3. Compile and simulate it. Change

the program parameters (registers s0, s1), observe the process and results. Pay attention

to changes in the sp register. Observe the memory pointed to by sp in the Data Segment

window.

Assignment 4

Create a project to implement Home Assignment 4. Compile and simulate it. Change

the parameter in the a0 register and check the result in the s0 register. Run the program

in the single-step mode and observe the changes in the registers pc, ra, sp, a0, s0. List

the values in the stack memory when executing the program with n = 3.

Assignment 5

Write a subroutine to find the largest value, the smallest value, and their respective

positions in a list of 8 integers stored in the registers from a0 to a7. For example:

▪ Largest: 9, 3 → The largest value is 9, stored in a3.

▪ Smallest: -3, 6 → The smallest value is -3, stored in a6.

Hint: Use the stack memory to pass parameters.

