Hanoi University of Science and Technology
School of Information and Communications Technology

Lab 07. Subroutine Call and Passing Parameters
Using the Stack

Goals

After this lab session, students will understand how to call subroutines and how the stack
mechanism works. Additionally, students will be able to write their own subroutines that
use the stack for passing parameters and returning results.

Subroutine Call

A procedure (subroutine) is a block of code that performs a specific task and may return
one or more results based on input parameters. When the subroutine finishes, the
processor returns to the location of the subroutine call to continue executing the next
instructions.

In assembly programming, a subroutine is typically associated with a label to mark the
starting address of the subroutine. There are two instructions used when working with
subroutines:

» jal rd, label (jump and link): This saves the address of the next instruction
(pc + 4) into the rd register and jumps to the instruction at the label. This address
will be used to return to the main program after the subroutine finishes. The
pseudo-instruction jal label (equivalentto jal ra, label) saves the return
address in the ra register, which is commonly used to call a subroutine.

* jalr rd, rs1, imm (jump and link register): This saves the address of the
next instruction (pc + 4) into the rd register and jumps to the instruction at
address rsl + imm. The pseudo-instruction jr ra (equivalent to jalr zero,
ra, ©)jumps to the address stored in the ra register and is commonly used to
return to the main program.

} Prepare
to call
PC—* jal Proc
> Prepare
} to continue proc.
} Sawe, ete.
} Restore
qE 1

Relationship between the main program and a procedure.

Hanoi University of Science and Technology
School of Information and Communications Technology

Assignments at Home and at Lab

Home Assignment 1

The program below illustrates how to declare and use the abs function to calculate the
absolute value of an integer. The function uses two registers: a0 holds the input
parameter and sO holds the result. Read the program carefully to understand how to
declare and call the subroutine.

Laboratory Exercise 7 Home Assignment 1

.text
main:

1i ae@, -45 # load input parameter

jal abs # jump and link to abs procedure

1i a7, 10 # terminate

ecall
end_main:
e,
function abs
param[in] a0 the interger need to be gained the absolute
value
return sO absolute value
e,
abs

sub s@, zero, a0 # put -a@ in s@; in case ad < 0

blt a@, zero, done # if a@<@ then done

add s@, a0, zero # else put a@ in s@
done:

jr ra

Home Assignment 2

In this example, the max subroutine is declared and used to find the largest element
among three integers. The parameters are passed to the subroutine via the a0, al, and a2
registers, and the result is stored in the sO register. Read the program carefully to
understand how to declare and call the subroutine.

Laboratory Exercise 7, Home Assignment 2

.text
main:
1i a0, 2 # load test input
1i al, 6
1i a2, 9
jal max # call max procedure

1i a7, 10 # terminate
ecall
end_main:

Procedure max: find the largest of three integers
param[in] a@ integers
param[in] al integers
param[in] a2 integers

Hanoi University of Science and Technology

School of Information and Communications Technology

return

add
sub
blt
add
okay:
sub
blt
add
done:

jr

s@ the largest

so,
to,
to,
so,

ad, zero
al, so

al, zero
to,

te,
so,

a2, so
zero,
a2, zero

ra

zero, okay

done #

copy a@ in

#

compute al
if al -

#

vo

else al is

compute a2

if a2 -

vo

else a2 is

return to calling program

- VO
<@ then no change
largest overall

s@; largest so far
- sO
< @ then no change
largest thus far

Home Assignment 3

Support:

Support: Stack memory operates arccording to the Last In First Out (LIFO) principle
and is usually managed by the sp (stack pointer) register. The sp register stores the
address of the top element of the stack and is used for two operations: push and pop.
Using the Stack:
1. Create space to store the contents of one or more registers (reduce the value of the
sp register by the required number of bytes).
2. Store the contents of the necessary registers into the stack (using the sw
instruction).
3. Execute the program that uses these registers.
4. Restore the original values of the registers (using the Iw instruction).
5. Return the allocated stack memory by restoring the original value of the sp
register.
Note that in RISC-V, the bottom of the stack has the highest address.

(@)
Stack before the push operation

Address Data
BEFFFAES8 |AB0O0O0OOO1
BEFFFAE4
BEFFFAEOQ
BEFFFADC

“ sp

Address

BEFFFAES
BEFFFAE4
BEFFFAEQ
BEFFFADC

.

(b)

Data

ABO0OOOO1

12345678

FFEEDDCC

<+ sp

Stack after the push operation

The assembly program below demonstrates how to use the stack with the push and pop
operations, which are implemented by the Iw and sw instructions. The values of the two
registers sO and s1 will be swapped using the stack.

Laboratory Exercise 7, Home Assignment 3

.text
push:

addi

SW

sp, sp,
s@, 4(sp)

-8

adjust the stack pointer
push s@ to stack

Hanoi University of Science and Technology
School of Information and Communications Technology

sw sl, 0(sp) # push s1 to stack
work:
nop
nop
nop
pop:
1w s@, 0(sp) # pop from stack to s@
1w sl, 4(sp) # pop from stack to sl
addi sp, sp, 8 # adjust the stack pointer
Support:

According to RISC-V conventions, input parameters are typically stored in the a0-a7
registers, while return values are stored in the a0 register. There are some questions to

address:
1. What happens if a function has more than 8 input parameters or returns more than
one value?
2. What happens if a function needs to save its input parameters and state to call
another function?
3. What happens if a program has too many local variables to be stored in 32

registers?

Solution: Use the stack memory.

Caller and Callee Conventions

1.

Caller Rule: Before calling the callee, the caller saves the contents of the
registers containing the input parameters and its temporary registers onto the
stack (a0-a7 and t0-t6), allowing the callee to use these registers. After the
callee finishes, the caller restores the contents of the saved registers.

Callee Rule: Before executing, the callee must save the contents of the registers
it wants to use (sO-s11 and ra). Before returning to the caller, the callee must
restore the contents of the previously saved registers.

These conventions ensure that the subroutine can use as many registers as possible to
serve the program.

Note for Nested Procedures:

main
Prepare
‘ to call
PC— jal abc Procedure
» } Prepare abe
to continue abc Procedure
} Sawe Xyz
XYZ }
jal xyz }4,_.
} Restore }
jr Sra jr $ra _\

Hanoi University of Science and Technology
School of Information and Communications Technology

When calling the xyz subroutine, you must save the ra register (which currently holds
the return address of the abc function) onto the stack before jumping to xyz. Otherwise,
the current value of the ra register will be overwritten by the return address of the xyz

subroutine, and the function will not be able to return to the main program.

Home Assignment 4

The following program uses a recursive algorithm to calculate n!. Read the program
carefully to understand how the stack is used to store and restore registers.

Laboratory Exercise 7, Home Assignment 4
.data
message: .asciz "Ket qua tinh giai thua la:

.text
main:
jal WARP
print:
add al, s@, zero # a0 = result from N!
1i a7, 56
la a0, message
ecall
quit:
1i a7, 10 # terminate
ecall
end_main:
B m e e e e e e e e e e e e e e
Procedure WARP: assign value and call FACT
T 0 1 0 1 1 £ 5 3 0 0 0 0 0 3) 1 0)) 3 0 3) £ 0 0 0 0) £ 0 £ 0 3 0 5 3 0 0 0 5 £ 3 0 3 5 £ 3 3 1 3 1) 0 3 0 3
WARP
addi sp, sp, -4 # adjust stack pointer
SW ra, 0(sp) # save return address
1li a0, 3 # load test input N
jal FACT # call fact procedure
1w ra, 0(sp) # restore return address
addi sp, sp, 4 # return stack pointer
jr ra
wrap_end:
B m e e e e e e e e e e e e e e

Procedure FACT: compute N!
param[in] a@ integer N

return s®@ the largest value
< e
FACT:

addi sp, sp, -8 # allocate space for ra, a@ in stack

SwW ra, 4(sp) # save ra register

SW a0, O(sp) # save a@ register

1i t0, 2

bge a0, to, recursive

1i so, 1 # return the result N!=1

Jj done

recursive:

Hanoi University of Science and Technology
School of Information and Communications Technology

addi a0, a@, -1 # adjust input argument
jal FACT # recursive call
1w sl, 0(sp) # load a@
mul s@, sO, sl
done:
1w ra, 4(sp) # restore ra register
1w a0, 0(sp) # restore a@ register
addi sp,sp,8 # restore stack pointer
jr ra # jump to caller
fact_end:

Assignment 1

Create a project to implement Home Assignment 1. Compile and simulate it. Change
the program parameters (register a0) and observe the execution results. Run the program
in the single-step mode and pay attention to the changes in registers, especially the pc
and ra registers.

Assignment 2

Create a project to implement Home Assignment 2. Compile and simulate it. Change
the program parameters (registers a0, al, a2) and observe the execution results. Run the
program in the single-step mode and pay attention to the changes in registers, especially
the pc and ra registers.

Assignment 3

Create a project to implement Home Assignment 3. Compile and simulate it. Change
the program parameters (registers s0, s1), observe the process and results. Pay attention
to changes in the sp register. Observe the memory pointed to by sp in the Data Segment
window.

Assignment 4

Create a project to implement Home Assignment 4. Compile and simulate it. Change
the parameter in the a0 register and check the result in the sO register. Run the program
in the single-step mode and observe the changes in the registers pc, ra, sp, a0, s0. List
the values in the stack memory when executing the program with n = 3.

Assignment 5

Write a subroutine to find the largest value, the smallest value, and their respective
positions in a list of 8 integers stored in the registers from a0 to a7. For example:

= Largest: 9,3 — The largest value is 9, stored in a3.

= Smallest: -3, 6 — The smallest value is -3, stored in ab6.
Hint: Use the stack memory to pass parameters.

