Hanoi University of Science and Technology
School of Information and Communications Technology

Lab 06. Array and Pointer

Goals

After this lab session, students will understand how arrays and pointers are represented
and will be able to differentiate between using array indexing and pointer to traverse the
elements of an array.

Array and Pointer

Many programming tasks involve traversing array elements. For example, finding the
largest element in an array or sorting the elements of an array. There are two basic
methods for traversing array elements: using array indexing or pointer.

1. Indexing: A register is used to store the value of the index i of the element to be
accessed, and the index is increased or decreased to access other elements of the
array.

2. Pointer: A register stores the address of the element to be accessed, and the value
of the register is changed to point to other elements in the array.

Array index i Bas& Array A Pointer to A[i] Array A
A i A
[- : |r
Add 1toi;) : Add 4 to get
Eg;"gu:e S'" I the address)
i to base) i \
Ali + 1] Al +1]

Using the indexing method and the pointer updating method to step through the elements
of an array.

Assignments at Home and at Lab

Home Assignment 1

Algorithm for finding the maximum prefix sum:

Given an array of integers with length n, the prefix of length i consists of the first i
elements in the array, where 1 <1i<n. A prefix sum is the sum of the first i elements in
the array. Find the maximum prefix sum of the given array.

Example: Given the array (2, -3, 2, 5, -4), the maximum prefix sum includes the first
four elements, and the corresponding sumis (2 + -3+ 2 + 5) = 6.

Hanoi University of Science and Technology
School of Information and Communications Technology

The program below implements this algorithm using indexing-based access. Read and
understand how the program works.

n elements
N
f” N
v S e R
o777 iPrefix:s0=4 1 AN
il ¢ Prefix: s0=5 ; i -
'« Prefix:length i
.data
A: .word -2, 6, -1, 3, -2
.text
main:
1a ao, A
1i al, 5
J mspfx
continue:
exit:
1i a7, 10
ecall

end_of main:

Procedure mspfx

@brief find the maximum-sum prefix in a list of integers

@param[in] a@ the base address of this list(A) needs to be processed
@param[in] al the number of elements in 1list(A)

@param[out] s@ the length of sub-array of A in which max sum reachs.
@param[out] s1 the max sum of a certain sub-array

Procedure mspfx

Function: find the maximum-sum prefix in a list of integers
The base address of this list(A) in a@ and the number of

elements is stored in al

mspfx:
1i s9, 0 # initialize length of prefix-sum in s@ to ©
1i sl, 0x80000000 # initialize max prefix-sum in sl to smallest int
1i to, 0 # initialize index for loop i in t@ to ©
1i t1, © # initialize running sum in t1 to ©
loop:
add t2, to, to # put 2i in t2
add t2, t2, t2 # put 4i in t2

add t3, t2, a0

+*

put 4i+A (address of A[i]) in t3

Hanoi University of Science and Technology
School of Information and Communications Technology

Iw t4, o(t3)

add t1, t1, t4
blt sl, t1, mdfy
J next
mdfy :
addi so, to, 1
addi s1, t1, ©
next:
addi to, to, 1
blt to, al, loop
done:
J continue
mspfx_end:

H

load A[i] from mem(t3) into t4
add A[i] to running sum in t1
if(sl < tl) modify results

new max-sum prefix has length i+l
new max sum is the running sum

advance the index i
if(i<n) repeat

Home Assignment 2

Selection Sort Algorithm:
An array of n integers can be sorted in ascending order as follows: Find the largest
element in the list and swap it with the last element of the array. The last element is now
in its correct position. Repeat these steps for the remaining n - 1 unsorted elements until
only one element remains. At this point, the algorithm is complete, and the array is sorted

in ascending order.

The program below demonstrates the implementation of the selection sort algorithm
using pointer-based access. Read and understand how the program operates.

max unsorted elements
A
~
max cur
_ Hpeleey * : A\\' %
=" \ 1N S
-7 . ! \\ 1 \\ S N
- ‘l \4 || \4 S R
a0 sO | s1 'compare | tO t1 al

sort unsorted sorted

swvl,0(al)

Hanoi University of Science and Technology
School of Information and Communications Technology

.data
A: .word 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5
Aend: .word

.text
main:
1a ao, A # a0
1a al, Aend
addi al, al, -4 # al
Jj sort # sort
after_sort:
1i a7, 10
ecall
end_main:

address(A[@])

address(A[n-1])

Procedure sort (ascending selection sort using pointer)
register usage in sort program

a@ pointer to the first element in unsorted part

al pointer to the last element in unsorted part

tO temporary place for value of last element

s@ pointer to max element in unsorted part

sl value of max element in unsorted part

e .
sort
beq a0, al, done # single element list is sorted
Jj max # call the max procedure
after_max:
1w t0, 0(al) # load last element into $to
Sw t0, 0(s0) # copy last element to max location
sw sl, 0(al) # copy max value to last element
addi al, a1, -4 # decrement pointer to last element
Jj sort # repeat sort for smaller list
done:
Jj after_sort
.

Procedure max

function: fax the value and address of max element in the list
a@ pointer to first element

al pointer to last element

g
max

addi s@, a@, © # init max pointer to first element

1w sl, 0(s@) # init max value to first value

addi t@, a0, 0 # init next pointer to first
loop:

beq t0, al, ret # if next=last, return
addi tO@, to, 4 # advance to next element

Hanoi University of Science and Technology
School of Information and Communications Technology

1w tl, 0(t@) # load next element into $ti1

blt t1, s1, loop # if (next)<(max), repeat

addi s@, te, 0 # next element is new max element

addi s1, tl, © # next value is new max value

Jj loop # change completed; now repeat
ret:

J after_max

Assignment 1

Create a project that implements the program in Home Assignment 1. Initialize a new
set of values for the array and compile it. Run the program step by step and observe the
changes in the registers to verify that the program works according to the algorithm.

Assignment 2

Create a new project that implements the program in Home Assignment 2. Initialize a
new set of values for the array and compile it. Run the program step by step and observe
the changes in the registers to verify that the program works according to the algorithm.
Write an additional subprogram to print the array after each sorting pass.

Assignment 3
Write a program that implements the bubble sort algorithm.

Assignment 4
Write a program that implements the insertion sort algorithm.

