
Hanoi University of Science and Technology
School of Information and Communications Technology

1

Lab 06. Array and Pointer

Goals

After this lab session, students will understand how arrays and pointers are represented

and will be able to differentiate between using array indexing and pointer to traverse the

elements of an array.

Array and Pointer

Many programming tasks involve traversing array elements. For example, finding the

largest element in an array or sorting the elements of an array. There are two basic

methods for traversing array elements: using array indexing or pointer.

1. Indexing: A register is used to store the value of the index i of the element to be

accessed, and the index is increased or decreased to access other elements of the

array.

2. Pointer: A register stores the address of the element to be accessed, and the value

of the register is changed to point to other elements in the array.

Using the indexing method and the pointer updating method to step through the elements

of an array.

Assignments at Home and at Lab

Home Assignment 1

Algorithm for finding the maximum prefix sum:

Given an array of integers with length n, the prefix of length i consists of the first i

elements in the array, where 1 ≤ i ≤ n. A prefix sum is the sum of the first i elements in

the array. Find the maximum prefix sum of the given array.

Example: Given the array (2, -3, 2, 5, -4), the maximum prefix sum includes the first

four elements, and the corresponding sum is (2 + -3 + 2 + 5) = 6.

Hanoi University of Science and Technology
School of Information and Communications Technology

2

The program below implements this algorithm using indexing-based access. Read and

understand how the program works.

.data

A: .word -2, 6, -1, 3, -2

.text

main:

 la a0, A

 li a1, 5

 j mspfx

continue:

exit:

 li a7, 10

 ecall

end_of_main:

Procedure mspfx

@brief find the maximum-sum prefix in a list of integers

@param[in] a0 the base address of this list(A) needs to be processed

@param[in] a1 the number of elements in list(A)

@param[out] s0 the length of sub-array of A in which max sum reachs.

@param[out] s1 the max sum of a certain sub-array

Procedure mspfx

Function: find the maximum-sum prefix in a list of integers

The base address of this list(A) in a0 and the number of

elements is stored in a1

mspfx:

 li s0, 0 # initialize length of prefix-sum in s0 to 0

 li s1, 0x80000000 # initialize max prefix-sum in s1 to smallest int

 li t0, 0 # initialize index for loop i in t0 to 0

 li t1, 0 # initialize running sum in t1 to 0

loop:

 add t2, t0, t0 # put 2i in t2

 add t2, t2, t2 # put 4i in t2

 add t3, t2, a0 # put 4i+A (address of A[i]) in t3

n elements

Prefix: s0 = 4

Prefix: s0 = 5

Prefix: length i

a0 t3

3

Hanoi University of Science and Technology
School of Information and Communications Technology

3

 lw t4, 0(t3) # load A[i] from mem(t3) into t4

 add t1, t1, t4 # add A[i] to running sum in t1

 blt s1, t1, mdfy # if(s1 < t1) modify results

 j next

mdfy:

 addi s0, t0, 1 # new max-sum prefix has length i+1

 addi s1, t1, 0 # new max sum is the running sum

next:

 addi t0, t0, 1 # advance the index i

 blt t0, a1, loop # if(i<n) repeat

done:

 j continue

mspfx_end:

Home Assignment 2

Selection Sort Algorithm:

An array of n integers can be sorted in ascending order as follows: Find the largest

element in the list and swap it with the last element of the array. The last element is now

in its correct position. Repeat these steps for the remaining n - 1 unsorted elements until

only one element remains. At this point, the algorithm is complete, and the array is sorted

in ascending order.

The program below demonstrates the implementation of the selection sort algorithm

using pointer-based access. Read and understand how the program operates.

max cur

unsorted elements

a0 a1

max

t1 t0 s1 s0 compare

unsorted

end

a0 a1

sort sorted

t0

max

s1 s0

sw

$t0,0(v0)

sw v1,0(a1)

Hanoi University of Science and Technology
School of Information and Communications Technology

4

.data

A: .word 7, -2, 5, 1, 5, 6, 7, 3, 6, 8, 8, 59, 5

Aend: .word

.text

main:

 la a0, A # a0 = address(A[0])

 la a1, Aend

 addi a1, a1, -4 # a1 = address(A[n-1])

 j sort # sort

after_sort:

 li a7, 10

 ecall

end_main:

--

Procedure sort (ascending selection sort using pointer)

register usage in sort program

a0 pointer to the first element in unsorted part

a1 pointer to the last element in unsorted part

t0 temporary place for value of last element

s0 pointer to max element in unsorted part

s1 value of max element in unsorted part

--

sort:

 beq a0, a1, done # single element list is sorted

 j max # call the max procedure

after_max:

 lw t0, 0(a1) # load last element into $t0

 sw t0, 0(s0) # copy last element to max location

 sw s1, 0(a1) # copy max value to last element

 addi a1, a1, -4 # decrement pointer to last element

 j sort # repeat sort for smaller list

done:

 j after_sort

Procedure max

function: fax the value and address of max element in the list

a0 pointer to first element

a1 pointer to last element

max:

 addi s0, a0, 0 # init max pointer to first element

 lw s1, 0(s0) # init max value to first value

 addi t0, a0, 0 # init next pointer to first

loop:

 beq t0, a1, ret # if next=last, return

 addi t0, t0, 4 # advance to next element

Hanoi University of Science and Technology
School of Information and Communications Technology

5

 lw t1, 0(t0) # load next element into $t1

 blt t1, s1, loop # if (next)<(max), repeat

 addi s0, t0, 0 # next element is new max element

 addi s1, t1, 0 # next value is new max value

 j loop # change completed; now repeat

ret:

 j after_max

Assignment 1

Create a project that implements the program in Home Assignment 1. Initialize a new

set of values for the array and compile it. Run the program step by step and observe the

changes in the registers to verify that the program works according to the algorithm.

Assignment 2

Create a new project that implements the program in Home Assignment 2. Initialize a

new set of values for the array and compile it. Run the program step by step and observe

the changes in the registers to verify that the program works according to the algorithm.

Write an additional subprogram to print the array after each sorting pass.

Assignment 3

Write a program that implements the bubble sort algorithm.

Assignment 4

Write a program that implements the insertion sort algorithm.

