
 

 

Lab 4. Arithmetic and Logical Instructions 
 

Goals 

After this laboratory exercise, you should know how to use arithmetic, logical and shift 

instructions. In addition, you should also understand overflow in arithmetic operation 

and how to detect it. 

References 

- RISC-V documents, textbook. 

- The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf 

Preparation 

 

Assignments at Home and at Lab 

Home Assignment 1 

The arithmatic was introduced in Laboratory Exercises 02, this assignment describes a 

special situation when adding two integers – the overflow. 

 

Support: The sum of two 32-bit integers may not be representable in 32 bits. In this 

case, we say that an overflow has occurred. Overflow is possible only with operands of 

the same sign.  

For two nonnegative (negative) operands, if the sum obtained is less (greater) than 

eitheir operand, overflow has occurred 

 

The following program dectects overflow based on this rule. Two operands are stored 

in register s1 and s2, the sum is stored in register s3. If overflow occur, t0 register is set 

to 1 and clear to 0 in otherwise.  

 
# Laboratory Exercise 4, Home Assignment 1 
.text 
   # TODO: Initialize s1 and s2 in different cases 
    
   # Algorithm for determing orverflow condition 
   li    t0, 0             # No overflow is default status 
   add   s3, s1, s2        # s3 = s1 + s2 
   xor   t1, s1, s2        # Test if s1 and s2 have the same sign  
   blt   t1, zero, EXIT    # If not, exit 
   slt   t2, s3, s1   
   blt   s1, zero, NEGATIVE   # Test if s1 and s2 is negative? 
   beq   t2, zero, EXIT       # s1 and s2 are positive 
   # if s3 > s1 then the result is not overflow 
   j     OVERFLOW              
NEGATIVE:                      
   bne   t2, zero, EXIT    # s1 and s2 are negative 
   # if s3 < s1 then the result is not overflow  

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf


Hanoi University of Science and Technology 
School of Information and Communications Technology 

 

1 
 

OVERFLOW: 
   li    t0, 1          # The result is overflow 
EXIT: 

 

Home Assignment 2 

The basic logical operation includes and, or, xor, not.  

These instructions operates with bits of source operands and write the result to 

destination operand.  

 
There are versions of immediate format of and, or, xor using with a source register 

and a 12-bit immediate value.  

 

Some useful ways with logical operations: 

i. and is used to extract some bits from a register or value 

ii. and is used to clear some bits of a register or value 

iii. or is used to set some bits for a register. 

 

The following program demonstrates how to use logical instructions to extract 

information from one register. We can extract one bit or more according to the mask we 

use. Read this example carefully and explain each lines of: 

 

 

Home Assignment 3  

The next logical instructions in this assignment are shift instructions including sll 

(shift left logical), srl (shift right logical), and sra (shift right arithmetic).  

# Laboratory Exercise 4, Home Assignment 2 
.text 
   li    s0, 0x12345678 # Test value 
   andi  t0, s0, 0xff   # Extract LSB of s0 
   andi  t1, s0, 0x0400 # Extract bit 10 of s0 



Hanoi University of Science and Technology 
School of Information and Communications Technology 

 

2 
 

  
RISC-V supports the immediate format of the shift instructions (slli, srli, and 

srai), with 5-bit constant. 

Note that, shifting left (right) n-bit is equivalent to multiply (divide) by 2n. 

This example show how the shift operations used to implement other instructions, such 

as multiply by a small power of 2 

 

 

Assignment 1 

Create a new project to implement the Home Assigment 1. Compile and upload to 

simulator. Initialize two operands (register s1 and s2), run this program step by step, 

observe memory and registers value.  

Assignment 2 

Write a program to do the following tasks: 

▪ Extract MSB of s0 

▪ Clear LSB of s0 

▪ Set LSB of s0 (bits 7 to 0 are set to 1) 

▪ Clear s0 (s0=0, must use logical instructions) 

 

MSB: Most Significant Byte  

LSB: Least Significant Byte 

 
 s0 = 0x 1 2 3 4 5 6 7 8 

 

       MSB            LSB 

Assignment 3 

Pseudo instructions in RISC-V are not-directly-run-on-RISC-V-processor instructions 

which need to be converted to real-instructions of RISC-V. Re-write the following 

pseudo instructions using real-instructions understood by RISC-V processors: 

 

a. abs   s0, s1 

 s0 = abs($s1) 

# Laboratory Exercise 3, Home Assignment 3 
.text 
   li    s0, 1       # s0 = 1 
   sll   s1, s0, 2   # s1 = s0 * 4 



Hanoi University of Science and Technology 
School of Information and Communications Technology 

 

3 
 

b. move  s0, s1 

 s0 = s1 

c. not   s0 

 s0 = bit_invert(s0) 

d. ble   s1, s2, label 
 if (s1 <= s2)  

  j label 

Assignment 4 

To dectect overflow in additional operation, we also use other rule than the one in 

Assignment 1. This rule is: when add two operands that have the same sign, overflow 

will occur if the sum doesn’t have the same sign with either operands. You need to use 

this rule to write another overflow detection program. 

Assignment 5 

Write a program that implement multiply by a small power of 2. (2, 4, 8, 16, etc for 

example). 

Conclusions 

What is benefit of using shift instructions for implementing multiplication comparing 

with multiply instructions (RV32M: RISC-V 32-bit Multiplier/Divider) ? 


