Lab 4. Arithmetic and Logical Instructions

Goals

After this laboratory exercise, you should know how to use arithmetic, logical and shift
instructions. In addition, you should also understand overflow in arithmetic operation
and how to detect it.

References

- RISC-V documents, textbook.
- The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

Preparation

Assignments at Home and at Lab

Home Assignment 1

The arithmatic was introduced in Laboratory Exercises 02, this assignment describes a
special situation when adding two integers — the overflow.

Support: The sum of two 32-bit integers may not be representable in 32 bits. In this
case, we say that an overflow has occurred. Overflow is possible only with operands of
the same sign.

For two nonnegative (negative) operands, if the sum obtained is less (greater) than
eitheir operand, overflow has occurred

The following program dectects overflow based on this rule. Two operands are stored
in register s1 and s2, the sum is stored in register s3. If overflow occur, t0 register is set
to 1 and clear to O in otherwise.

Laboratory Exercise 4, Home Assignment 1
.text
TODO: Initialize sl and s2 in different cases

Algorithm for determing orverflow condition

1i to, 0 # No overflow is default status

add s3, s1, s2 # s3 = sl + s2

xor t1, s1, s2 # Test if sl and s2 have the same sign
blt tl, zero, EXIT # If not, exit

slt t2, s3, si
blt sl1, zero, NEGATIVE # Test if sl and s2 is negative?

beq t2, zero, EXIT # sl and s2 are positive
if s3 > sl then the result is not overflow
Jj OVERFLOW
NEGATIVE:
bne t2, zero, EXIT # sl and s2 are negative

if s3 < sl then the result is not overflow

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Hanoi University of Science and Technology
School of Information and Communications Technology

OVERFLOW:
1i to, 1 # The result is overflow
EXIT:

Home Assignment 2

The basic logical operation includes and, or, xor, not.
These instructions operates with bits of source operands and write the result to
destination operand.

Source registers

s1 | 0100 0110 | 1010 0001 | 1111 0001 | 1011 0111
s2 [11111111 | 1111 1111 | 0000 0000 | 0000 0000

Assembly code Result
and s3, sl, s2 s3|01000110| 1010 0001 | 0000 0000 | 0000 0000
or s4, sl, s2 s4|11111111|1111 1111|1111 0001 | 1011 0111
xor s5, sl, s2 s5|10111001|0101 1110|1111 0001 | 1011 0111

There are versions of immediate format of and, or, xor using with a source register
and a 12-bit immediate value.

Some useful ways with logical operations:
I. and isused to extract some bits from a register or value
li. and isused to clear some bits of a register or value
lli. or isused to set some bits for a register.

The following program demonstrates how to use logical instructions to extract
information from one register. We can extract one bit or more according to the mask we
use. Read this example carefully and explain each lines of:

Laboratory Exercise 4, Home Assignment 2
.text
1i sO, 0x12345678 # Test value
andi t@, sO@, oxff # Extract LSB of s@
andi t1, s0, 0x0400 # Extract bit 10 of s©

Home Assignment 3

The next logical instructions in this assignment are shift instructions including s11
(shift left logical), sr1 (shift right logical), and sra (shift right arithmetic).

Hanoi University of Science and Technology
School of Information and Communications Technology

Source register

s5| 11111111 | 0001 1100 | 0001 0000 | 1110 0111

Assembly code Result
slli t0, s5, 7 +0 | 1000 1110 | 0000 1000 | 0111 0011 | 1000 0000
srli sl1, s5, 17 s1 |0000 0000 | 00000OCOO| 01111111 (1000 1110
srai t2, s5, 3 t2 | 11111111 | 1110 0011 | 1000 0010 | 0001 1100

RISC-V supports the immediate format of the shift instructions (s111, sr1i, and
srai), with 5-bit constant.
Note that, shifting left (right) n-bit is equivalent to multiply (divide) by 2".

This example show how the shift operations used to implement other instructions, such

as multiply by a small power of 2

Laboratory Exercise 3, Home Assignment 3

.text
1i so, 1 #s0 =1
sll sl, s@, 2 # sl =50 * 4

Assignment 1

Create a new project to implement the Home Assigment 1. Compile and upload to
simulator. Initialize two operands (register s1 and s2), run this program step by step,

observe memory and registers value.

Assignment 2

Write a program to do the following tasks:
= Extract MSB of sO
= Clear LSB of sO
= Set LSB of sO (bits 7 to 0 are set to 1)
= Clear sO (s0=0, must use logical instructions)

MSB: Most Significant Byte

LSB: Least Significant Byte
sO =0x 123 45¢6 738
MSB LgB

Assignment 3

Pseudo instructions in RISC-V are not-directly-run-on-RISC-V-processor instructions

which

need to be converted to real-instructions of RISC-V. Re-write the following

pseudo instructions using real-instructions understood by RISC-V processors:

a. abs

sO, sl
abs (Ss1)

s0

Hanoi University of Science and Technology
School of Information and Communications Technology

b.move s0, sl
sO = sl
C. not s0
sO0 = bit invert (s0)
d.ble sl, s2, label
if (sl <= s2)
7 label

Assignment 4

To dectect overflow in additional operation, we also use other rule than the one in
Assignment 1. This rule is: when add two operands that have the same sign, overflow
will occur if the sum doesn’t have the same sign with either operands. You need to use
this rule to write another overflow detection program.

Assignment 5

Write a program that implement multiply by a small power of 2. (2, 4, 8, 16, etc for
example).

Conclusions

What is benefit of using shift instructions for implementing multiplication comparing
with multiply instructions (RV32M: RISC-V 32-bit Multiplier/Divider) ?

