Lab 3. Jump and Branch Instructions

Goals

After this laboratory exercise, you should know how to use jump and branch
instructions. You should also be able to implement high level programming language
structures such as conditional statement (if-then-else), loop and selection statement
(switch-case)

References

- RISC-V documents, textbook.
- The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

Preparation

Before start this laboratory, you should review textbook and read the entire laboratory
exercise in detail. You also need to review Laboratory Exercise 2

Assignments at Home and at Lab

= Conditional branch instructions (if the condition occurs then jump to target
address (label)): RISC-V supports 6 conditional branch instructions.

beq rsl, rs2, label|branch if = if (rsl == rs2) PC = BTA
bne rsl, rs2, label|branch if # if (rsl = rs2) PC = BTA
b1t rsl, rs2, label |branch if < if (rsl < rs2) PC = BTA
bge rsl, rs2, label|branch if > if (rsl =z rs2) PC = BTA
bltu rsl, rs2, label|branch if < unsigned if (rsl < rs2) PC = BTA
bgeu rsl, rs2, Tabel|branch if > unsigned if (rsl = rs2) PC = BTA

= Unconditional branch instructions: RISC-V supports 2 unconditional branch
instructions:

jalr rd, rsl, imm jumpandlinkregister PC=rsl +SignExt(imm), rd PC+ 4
jal rd, Tlabel jumpand link PC =JTA, rd = PC+4

Pseudo-instruction jump (§ label), jump to the label (target address) without
condition.

= Theinstruction s1t t1, t2, t3,settl=1ift2 <13, elsecleartl =0.

= The follow assignments show the implementation of programming structures as
in high-level languages
o if/else
o for/while
o switch/case

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Hanoi University of Science and Technology
School of Information and Communications Technology

Home Assignment 1

This home assignment implements “if-then-else” statement using some fundamental
instructions, such as slt, addi, jump and branch.

if (i <= 3)
X =X+1
z =1
else
y=y-1
zZ =2 * 2z

At first, you should draw the algorithm chart for this statement. After that, you read
this example carefully, try to clarify the function of each intructions.

Laboratory Exercise 3, Home Assignment 1
.text
start:

TODO:

Initialize i to si1

Initialize j to s2

Cach 1:
blt s2, s1, else # if j < i then jump else

Cach 2:
slt t0, s2, si # set t0 = 1 if j < i else clear t0 = 0
bne t0, zero, else # tO != O means tO = 1, jump else
then:
addi t1, ti1, 1 # then part: x=x+1
addi t3, zero, 1 # z=1
J endif # skip “else” part
else:
addi t2, t2, -1 # begin else part: y=y-1
add t3, t3, t3 # z=2%z
endif:

Home Assignment 2

The following example demonstrates how to implement loop statement. This program
computes the sum of elements of array A.

Description of algorithm by C language:
sum = O;
for (int i = 9; i < n; i += step)
sum += A[i];

Description of algorithm by pseudo-code:
sum = ©
i=o0

Hanoi University of Science and Technology
School of Information and Communications Technology

loop: if (i >= n) goto endloop
sum = sum + A[i]
i=1+ step
goto loop

endloop:

Accessing to an array: A store the starting address of the array A — the address of the
element A[0]. Assume that the size of each element is a word (or 4 byte), the address
of the element A[i]is computed by A + 4xi. Using the instruction lw for reading

data from memory to a register, and the instruction sw for writing the data from a register
to memory.

Syst
ystem Bus System Bus

cPU i
Main Memory CPU Main Memory
cu Ui load word stare word
) 24 E R 24

14 0x10000014 : 14 0x10000014
20 - 20

Address Main Memory

0x1000001c 25 A[8]

A A(ix4) 0x1000001c 2

0x10000018

0x10000014 14

offset 0x10000010 24
A+ 3x4 0x1000000c 14 A[3]
A+ 2x4 0x10000008 20 A[2]
A+1x4 0x10000004 0 All]
\ 0x10000000 2 A[0]

y A
d Base addess

Assuming that the index i, the starting address of A, the comparison constant n, step and
sum are found in registers s1, s2, s3, s4 and s5, respectively. You should try to
understand each line in this code

Laboratory 3, Home Assigment 2
.data
A: .word 1, 3, 2, 5, 4, 7, 8, 9, 6
.text
TODO: Initialize s2, s3, s4 registers
1i s1, © #1i=290
1i s5, © # sum = @
loop:

Hanoi University of Science and Technology
School of Information and Communications Technology

slt t2, s1, s3 # check loop condition i < n
beq t2, zero, endloop # if i >= n then end loop
add t1, si1, sl #tl =2 * sl
add t1, t1, t1 #t1 =4 * s1 => tl = 4*i
add t1, t1, s2 # tl store the address of A[i]
1w t0, 0(tl) # load value of A[i] in t©
add s5, s5, to # sum = sum + A[i]
add sl1, s1, s4 # i = 1 + step
j loop # go to loop

endloop:

Home Assignment 3

A switch/case statement allows multiway branching based on the value of an integer
variable. In the following example, the switch variable test can assume one of the three
values 0, 1, 2 and a different action is specified for each case.

switch(test) {
case 0O:
a=a+l; break;
case 1:
a=a-1; break;
case 2:
b=2*b; break;
}
Assuming that a and b are stored in registers $s2 and $s3. You should read this code
section carefully, understand how to implement switch/case statement.

Laboratory Exercise 3, Home Assignment 3

.data
test: .word O
.text
la so, test Nap dia chi clGa bién test vao s@

#
lw s1, ©(s@) # Nap gia tri cla bién test vao si
1i te, © # Nap gid tri can kiém tra
1i t1, 1 # Nap gia tri can kiém tra
1i t2, 2 # Nap gid tri can kiém tra
beq sl1, t0, case ©
beq s1, t1, case_1
beq s1, t2, case 2
j default
case 0:
addi s2, s2, 1 # a
j continue
case 1:
sub s2, s2, tl1 # a
j continue
case 2:
add s3, s3, s3 # b
j continue
default:
continue:

+ 1

]
Q

]
)]
1
=

]
N

*
(o

Hanoi University of Science and Technology
School of Information and Communications Technology

Assignment 1

Create a new project to implement the code in Home Assignment 1. Initialize for i and
j variable. Compile and upload to the simulator. Run this program step by step,
observe the changing of memory and the content of registers at each step.

Assignment 2

Create a new project implementing the code in Home Assignment 2. Initialize for i, n,
step, sum variables and array A. Compile and upload to the simulator. Run this program
step by step, observe the changing of memory and the content of registers by each step.
Try to test with some more cases (change the value of variables).

Assignment 3

Create a new project implementing the code in Home Assignment 3. Compile and
upload to the simulator. Run this program step by step; observe the changing of
memory and the content of registers by each step. Change the value of test variable
and run this program some times to check all cases.

Assignment 4
Modify the Assignment 1, so that the condition tested is:
< 3
>=]
+ 3 <=0
+ jJ > m + n (véimvan dugce luu trong cac thanh ghi khéc)

O QO w
S

Assignment 5

Modify the Assignment 2, so that the condition tested at the end of the loop is:
a.i <= n
b.sum >= 0
c.A[1] =0

Assignment 6

Using all of above instructions and statements, create a new project to implement this
function: find the element with the largest absolute value in a list of integers. Assuming
that this list is store in an integer array and we know the number of elements in

Conclusions

Before you pass the laboratory exercise, think about the questions below:
= Which registers are affected by a branch instruction?
= What is diferrence between jump and branch instructions ?
= Why are they implemented by two different formats ?

