

Lab 3. Jump and Branch Instructions

Goals

After this laboratory exercise, you should know how to use jump and branch

instructions. You should also be able to implement high level programming language

structures such as conditional statement (if-then-else), loop and selection statement

(switch-case)

References

- RISC-V documents, textbook.

- The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

Preparation

Before start this laboratory, you should review textbook and read the entire laboratory

exercise in detail. You also need to review Laboratory Exercise 2

Assignments at Home and at Lab

▪ Conditional branch instructions (if the condition occurs then jump to target

address (label)): RISC-V supports 6 conditional branch instructions.

▪ Unconditional branch instructions: RISC-V supports 2 unconditional branch

instructions:

Pseudo-instruction jump (j label), jump to the label (target address) without

condition.

▪ The instruction slt t1, t2, t3, set t1 = 1 if t2 < t3, else clear t1 = 0.

▪ The follow assignments show the implementation of programming structures as

in high-level languages
o if/else

o for/while
o switch/case

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Hanoi University of Science and Technology
School of Information and Communications Technology

1

Home Assignment 1

This home assignment implements “if-then-else” statement using some fundamental

instructions, such as slt, addi, jump and branch.

if (i <= j)
 x = x + 1
 z = 1
else
 y = y - 1
 z = 2 * z

At first, you should draw the algorithm chart for this statement. After that, you read

this example carefully, try to clarify the function of each intructions.

Laboratory Exercise 3, Home Assignment 1
.text
start:
 # TODO:
 # Initialize i to s1
 # Initialize j to s2

 # Cách 1:
 # blt s2, s1, else # if j < i then jump else

 # Cách 2:
 slt t0, s2, s1 # set t0 = 1 if j < i else clear t0 = 0
 bne t0, zero, else # t0 != 0 means t0 = 1, jump else

then:
 addi t1, t1, 1 # then part: x=x+1
 addi t3, zero, 1 # z=1
 j endif # skip “else” part
else:
 addi t2, t2, -1 # begin else part: y=y-1
 add t3, t3, t3 # z=2*z
endif:

Home Assignment 2

The following example demonstrates how to implement loop statement. This program

computes the sum of elements of array A.

Description of algorithm by C language:

 sum = 0;
 for (int i = 0; i < n; i += step)
 sum += A[i];

Description of algorithm by pseudo-code:
 sum = 0
 i = 0

Hanoi University of Science and Technology
School of Information and Communications Technology

2

loop: if (i >= n) goto endloop
sum = sum + A[i]

 i = i + step
 goto loop
endloop:

Accessing to an array: A store the starting address of the array A – the address of the

element A[0]. Assume that the size of each element is a word (or 4 byte), the address

of the element A[i]is computed by A + 4×i. Using the instruction lw for reading

data from memory to a register, and the instruction sw for writing the data from a register

to memory.

Assuming that the index i, the starting address of A, the comparison constant n, step and

sum are found in registers s1, s2, s3, s4 and s5, respectively. You should try to

understand each line in this code

Laboratory 3, Home Assigment 2
.data
 A: .word 1, 3, 2, 5, 4, 7, 8, 9, 6
.text
 # TODO: Initialize s2, s3, s4 registers
 li s1, 0 # i = 0
 li s5, 0 # sum = 0
loop:

Hanoi University of Science and Technology
School of Information and Communications Technology

3

 slt t2, s1, s3 # check loop condition i < n
 beq t2, zero, endloop # if i >= n then end loop
 add t1, s1, s1 # t1 = 2 * s1
 add t1, t1, t1 # t1 = 4 * s1 => t1 = 4*i
 add t1, t1, s2 # t1 store the address of A[i]
 lw t0, 0(t1) # load value of A[i] in t0
 add s5, s5, t0 # sum = sum + A[i]
 add s1, s1, s4 # i = i + step
 j loop # go to loop
endloop:

Home Assignment 3

A switch/case statement allows multiway branching based on the value of an integer

variable. In the following example, the switch variable test can assume one of the three

values 0, 1, 2 and a different action is specified for each case.

 switch(test) {
 case 0:
 a=a+1; break;
 case 1:
 a=a-1; break;
 case 2:
 b=2*b; break;
 }

Assuming that a and b are stored in registers $s2 and $s3. You should read this code

section carefully, understand how to implement switch/case statement.

Laboratory Exercise 3, Home Assignment 3
.data
 test: .word 0
.text
 la s0, test # Nạp địa chỉ của biến test vào s0
 lw s1, 0(s0) # Nạp giá trị của biến test vào s1
 li t0, 0 # Nạp giá trị cần kiểm tra
 li t1, 1 # Nạp giá trị cần kiểm tra
 li t2, 2 # Nạp giá trị cần kiểm tra
 beq s1, t0, case_0
 beq s1, t1, case_1
 beq s1, t2, case_2
 j default
case_0:
 addi s2, s2, 1 # a = a + 1
 j continue
case_1:
 sub s2, s2, t1 # a = a - 1
 j continue
case_2:
 add s3, s3, s3 # b = 2 * b
 j continue
default:
continue:

Hanoi University of Science and Technology
School of Information and Communications Technology

4

Assignment 1

Create a new project to implement the code in Home Assignment 1. Initialize for i and

j variable. Compile and upload to the simulator. Run this program step by step,

observe the changing of memory and the content of registers at each step.

Assignment 2

Create a new project implementing the code in Home Assignment 2. Initialize for i, n,

step, sum variables and array A. Compile and upload to the simulator. Run this program

step by step, observe the changing of memory and the content of registers by each step.

Try to test with some more cases (change the value of variables).

Assignment 3

Create a new project implementing the code in Home Assignment 3. Compile and

upload to the simulator. Run this program step by step; observe the changing of

memory and the content of registers by each step. Change the value of test variable

and run this program some times to check all cases.

Assignment 4

Modify the Assignment 1, so that the condition tested is:
a. i < j
b. i >= j
c. i + j <= 0

d. i + j > m + n (với m và n được lưu trong các thanh ghi khác)

Assignment 5

Modify the Assignment 2, so that the condition tested at the end of the loop is:
a. i <= n
b. sum >= 0
c. A[i] != 0

Assignment 6

Using all of above instructions and statements, create a new project to implement this

function: find the element with the largest absolute value in a list of integers. Assuming

that this list is store in an integer array and we know the number of elements in

Conclusions

Before you pass the laboratory exercise, think about the questions below:

▪ Which registers are affected by a branch instruction?

▪ What is diferrence between jump and branch instructions ?

▪ Why are they implemented by two different formats ?

