
Lab 2. Instruction Set, Basic Instructions,
Compiler Directives

Goals

After this lab session, you will understand modules of computer system, how it works

by debugging simple instructions of a RISC-V Processor. You also know and use basic

assembly instructions and find out the nature of CPU Architecture, exploit debug tools

to verify knowledge of Computer Architecture and Instruction Set. Remember some

common Compiler Directives which are used to guide RARS complete source code

correctly.

References

o RISC-V documents, lecture notes.

o The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

Home Assignments and Assignments

Home Assignment 1

Survey and try to have a glance of computer architecture: CPU, Memory, IO Modules

and System Interconnection (Bus); Programming Model; Dataflow; Instruction Set

Architecture;

A set of registers, called Register File, act as built-in variables inside the CPU.

Developers use registers as command variables, pointer variables point to difference

locations in the main memory such as Operating System, Text Segment, Data

Segment, Stack…

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Hanoi University of Science and Technology
School of Information and Communications Technology

1

Home Assignment 2

Read more about RISC-V architecture, remember fundamental knowledge as below:

o Names and meanings of 32 registers

o Dedicated registers PC, IR

o The simplest Instruction Set called RV32I. its extension with letters more

+ letter M: supports Multiplication

+ letter C: support compacted instruction with the length of 16-bit

For example, RV32IMC, RV32IM, etc.

o The RV32I has about 40 instructions which are classified into 6 groups, called

instruction formats: R, I, S, B, U, J.

Home Assignment 3

On the menu, select Help / click Help.

o Click on tab Directives. Understand .asciiz, .byte, .word .data, .text

o Click on tab Basic Instructions. Search information about instructions add,

addi, lui, mul, lw

o Click on tab Extended (pseudo) Instructions. Search information about

instructions li, la

Hanoi University of Science and Technology
School of Information and Communications Technology

2

Assignment 1: Assign 12-bit integer numbers / small integer

Support: As a RISC architecture, RV32I instruction set does not have an instruction to

assign values directly to registers, but can use the addition instruction to assign. For

example, to assign the value 0x123 to register s0, use the addition instruction

 addi s0, zero, 0x123.

On the other hand, instruction addi format is I type. I format save 12-bits to store 12-

bit signed integer (imm[11:0]). As a result, addi just assign a small integer in the range

of 12-bits (from -2048 to 2047).

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 1

.text

 addi s0, zero, 0x512 # s0 = 0 + 0x512; I-type: just store a constant

 # with 12-bit length

 add s0, x0, zero # s0 = 0 + 0 ; R-type:

Requirements:

- Use debug tool. Run step by step.

- Monitor the Registers window:

o Register s0.

o Register PC.

Hanoi University of Science and Technology
School of Information and Communications Technology

3

- Learn more about instructions lb, sb.

- In Text Segment, determine the instruction formats of the machine codes.

- Modified the instruction addi as bellow. Explain the result.

Assignment 2: Assign 32-bit integer

Support: To assign a 32-bit number to a 32-bit register, you let instruction load upper

immediate (lui), and instruction addi more. lui format is U-type which contains a

literal number of 20-bit. It loads a 20-bit constant into the 20 most significant bits of the

destination register. Combined with addi, addi loads a 12-bit constant into the 12 most

significant bits of the destination register. So you have full 32 bits.

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 2

Load 0x20232024 to s0 register

.text

 lui s0, 0x20232 # s0 = 0xABCDE000
 addi s0, s0, 0x024 # s0 = s0 + 0x123

Requirements:

- Use debug tool. Run step by step.

- Monitor the Registers window:

o Register s0.

o Register PC.

- In Text Segment, determine the instruction formats of the machine codes.

- Modified the instruction addi as bellow. Explain the result.

- In Data Segment, click to Combo Box, select .text to show values of memory

inside instruction area (.text).

o Compare data in Data Segment with machine codes in Text Segment.

Note:

- In RISC-V, the constant (immediate value) is always 2’s complemented, should

be extend to 32-bit 2's complement numbers, to fit the length of register.

Laboratory Exercise 2, Assignment 2

IN HIGH LEVEL LANGUAGE

int a = 0xFEEDB987;

IN ASSEMBLY LANGUAGE

.text

 lui s0, 0xFEEDC # s0 = 0xFEEDC000

 addi s0, s0, 0xFFFFF987 # s0 = 0xFEEDB987

addi s0, zero, 0x20232024

Hanoi University of Science and Technology
School of Information and Communications Technology

4

Assignment 3: new assignment instructions

Support: As a Reduced Instruction Set Computer architecture, RISC-V was optimized

to be simpler with fewer instructions. Consequently, developers must write code longer.

To compensate, the compilers support some Extended/Pseudo Instructions, which are

not part of the RISC-V instruction set but easier for developers to program. Whenever

compiled to machine code, each pseudo instruction could be 1 or more real instructions.

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 3

.text

 li s0, 0x20232024

 li s0, 0x20

Requirements:

- Compile, observe and compare the commands in the Source column and the Basic

column in the Text Segment window. Explain the results.

Assignment 4: Calculate the expression 2x + y = ?

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 4

.text

 # Assign X,Y into t1,t2 register

 addi t1, zero, 5 # X = t1 = ?

 addi t2, zero, -1 # Y = t2 = ?

 # Expression Z = 2X + Y

 add s0, t1, t1 # s0 = t1 + t1 = X + X = 2X

 add s0, s0, t2 # s0 = s0 + t2 = 2X + Y

Requirements:

- Use debug tool. Run step by step.

- Monitor the Registers window:

o Register t1, t2, s0,

o Value of s0 is correct?

- In Text Segment window, obtain machine codes of addi (I-type) and add(R-

type) instructions.

- Try to compile addi (I-type) and add(R-type) to machine code manually, and

compare.

Hanoi University of Science and Technology
School of Information and Communications Technology

5

Assignment 5: Multiplication

Support: Multiplication is quite different from other mathematical instructions, because

when multiplying two 32-bit numbers, the result is a 64-bit number. The RISC-V

architecture provides different instructions for performing multiplication, which can

write the result as 32-bit or 64-bit, depending on the instruction. These instructions are

not part of the RV32I basic architecture, but are part of the RV32M extension (RISC-V

multiply/divided extension).

The first multiplication type:

 mul rd, rs1, rs2 # rd = 32 least signification bits of rs1 * rs2

The second multiplication type:

 mul rd, rs1, rs2 # rd = 32 least signification bits of rs1 * rs2

 mulh rd, rs1, rs2 # rd = 32 msb of rs1 * rs2 (both rs1, rs2 are signed)

 mulsu rd, rs1, rs2 # rd = 32 msb of rs1 * rs2 (1 signed , 1 unsigned)

 mulhu rd, rs1, rs2 # rd = 32 msb of rs1 * rs2 (both rs1, rs2 are unsigned)

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 5

.text

 # Assign X, Y into t1, t2 register

 addi t1, zero, 4 # X = t1 =?

 addi t2, zero, 5 # Y = t2 =?

 # Expression Z = X * Y

 mul s1, t1, t2 # s1 just stores the low 32 bits of the result

Requirements:

- Use debug tool. Run step by step.

- Monitor the Registers window:

- Verify results of multiplication instructions.

- Try division instructions

Assignment 6: Declare and access variables

Support: Compiler directives are not machine codes, but supply more information for

the compiler to compile assembly code more accurately.

From the perspective of CPU, both instructions and data are binary numbers. cannot.

Hanoi University of Science and Technology
School of Information and Communications Technology

6

CPU cannot distinguish between instructions and data. In main memory, is a

hexadecimal number 0xF0028293 an instruction or a variable? Let us verify.

- Play a role of CPU, a hardware:

o If the Program Counter register, PC, is pointing to that number, that number

should be an instruction which is addi x5, x5, -256.

o If PC isn’t point to that number, the number should be a variable. You can

modify values, read/write it.

- Play a role of a compiler, a software:

o If that number is declared after the directive .data, it is a variable.

o If that number is declared after the directive .text, it is an instruction and

should be disassembled to addi x5, x5, -256

The directive .data and .text works as bookmarks, locate the start address of a certain

memory area in RAM, where the compiler will set the first variable or the first

instruction. This starting point is purely a convention for controlling resources, so each

CPU, each operating system, or compiler can set different starting points.

The example below shows 2 directives .data and .text for allocating and initializing

global variables, defining constants, variables loaded into the data segment, and the code

loaded into the text segment. (Understand how the program works).

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 6

.data # Declare variables

 X: .word 5 # Variable X, word type (4 bytes), initial value = 5

 Y: .word -1 # Variable Y, word type (4 bytes), initial value = -1

 Z: .word 0 # Variable Z, word type (4 bytes), initial value = 0

.text # Declare instructions

 # Fetch values of variables X and Y to registers

 la t5, X # Get the literal address of X in Data Segment

 la t6, Y # Get the literal address of Y

 lw t1, 0(t5) # t1 = X

 lw t2, 0(t6) # t2 = Y

 # Calculate Z = 2X + Y via registers respectively

 add s0, t1, t1

 add s0, s0, t2

 # Store values from registers to main memory (RAM)

 la t4, Z # Get Z’s address

 sw s0, 0(t4) # Store Z’s value to main memory

Requirements:

Hanoi University of Science and Technology
School of Information and Communications Technology

7

- In Labels window, see the addresses of X, Y, Z in main memory.

o Double click to labels X, Y, Z in the Labels windows to highlight their

locations in Data Segment. Read values and compare with initial values in

the assembly program.

- Compile and monitor instructions in the Text Segment window.

o How is Instruction la, load address, compiled (code column, basic

column, address column). Explain the way la works. (keep an eye on the

register pc, address of label X, Y).

- Use debug tool. Run step by step.

- Monitor the Registers window:

o Values of registers

o lw and sw.

- Learn more about instructions lb, sb.

- Remember the processing rules:

o Load as much as posible variables from main memory into registers by

instructions la, lw.

o Calculate with registers.

o Store values from register back to main memory by instructions la,

sw.

Assignment 7: Declare variables or instructions at specified addresses

Support: you could declare directives .data, .text with syntax below

 .data literal_address

 .text literal_address

The literal address is the start address of the memory area. The compiler will allocate

variables or instructions from this address onwards.

Consequences:

- Value of variables could be changed, but its address is fixed (Ignore

virtualization techniques or operating system).

- The address of an instruction is fixed.

Note:

- If you can find out the address of a variable of a target software, you can

develop another software to illegally access that variable and change its value.

That is hacking.

- If you can find the address of a instruction of a target software, you can

develop another software to replace that instruction by a jump instruction to

make CPU move to your codes. That is a computer virus.

Request the compiler to allocate variable at the address of 0x10011234
.data 0x10011234

x: .word

Hanoi University of Science and Technology
School of Information and Communications Technology

8

Request the compiler to allocate variable at the address of 0x10014320
.data 0x10014320

y: .word

Request the compiler to allocate instruction at the address of 0x00408000
.text 0x00408000

addi x1, zero, 2

Conclusion

