Lab 2. Instruction Set, Basic Instructions,
Compiler Directives

Goals

After this lab session, you will understand modules of computer system, how it works
by debugging simple instructions of a RISC-V Processor. You also know and use basic
assembly instructions and find out the nature of CPU Architecture, exploit debug tools
to verify knowledge of Computer Architecture and Instruction Set. Remember some
common Compiler Directives which are used to guide RARS complete source code
correctly.

References

o RISC-V documents, lecture notes.
o The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

Home Assignments and Assignments

Home Assignment 1

Survey and try to have a glance of computer architecture: CPU, Memory, 10 Modules
and System Interconnection (Bus); Programming Model; Dataflow; Instruction Set
Architecture;

SYSTEM BUS MAIN MEMORY
Address
7 ‘E (RAM and ROM)
DaFFFFFFF "]
CPU Operating System and
others
BN
5‘1"' :::::::::
 ——"
AL ﬁ-’ Cynamic Data Segmeant
Hoap | owiooos [
19000FFC
Control Unit Global Data Segrment
{CU) R
: v Tizxt Segmient
Register File Exceplion Handlers
fratine s
— 10 Module

A set of registers, called Register File, act as built-in variables inside the CPU.
Developers use registers as command variables, pointer variables point to difference
locations in the main memory such as Operating System, Text Segment, Data
Segment, Stack...

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Hanoi University of Science and Technology
School of Information and Communications Technology

Home Assignment 2

Read more about RISC-V architecture, remember fundamental knowledge as below:
o Names and meanings of 32 registers
o Dedicated registers PC, IR
o The simplest Instruction Set called RV32l. its extension with letters more
+ letter M: supports Multiplication
+ letter C: support compacted instruction with the length of 16-bit
For example, RV32IMC, RV32IM, etc.
o The RV32I has about 40 instructions which are classified into 6 groups, called
instruction formats: R, I, S, B, U, J.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7 l rs2 I rsl [funct3 l rd | opcode] R-type
| imm][11:0] | sl | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | sl | funct3 | imm{[4:0] | opcode | S-type
[imm[12] [imm[10:5] | rs2 [sl | funct3 [imm[4:1] [imm[11] | opcode | B-type
| imm[31:12] I rd | opcode | U-type
| imm[20] | imm([10:1] | imm([11] | imm[19:12] | rd | opcode | J-type

Home Assignment 3

On the menu, select Help / click Help.
o Click on tab Directives. Understand .asciiz, .byte, .word .data, .text

B4 RARS 1.6 Help X

[(RISCV | RARS | License | BugsiComments | Acknowledgements |

Operand Key for Example Instructions
label, target any textual label
tl, t2, t3 any integer register
< >

o

[Basic Instructions | Extended (pseudo) Instructions | Directives | Syscalls | Exceptions | Macros

I

[

.align Align next data item on specified byte boundary (0=byte, l=half, 2=word, 3=double)
.ascii Store the string in the Data segment but do not add null terminator

.asciz Store the string in the Data segment and add null terminator

.byte Store the listed walue(s) as & bit bytes

.data Subsequent items stored in Data segment at next available address

-double Store the listed value{s) as double precision floating point

1 I

o Click on tab Basic Instructions. Search information about instructions add,
addi, lui, mul, Iw

o Click on tab Extended (pseudo) Instructions. Search information about
instructions li, la

Hanoi University of Science and Technology
School of Information and Communications Technology

E'4 RARS 1.6 Hel X
s}

Il RISCV | RARS I License I Bugs/Comments [Acknowledgements |

Operand Key for Example Instructions

label, target any textual label
t1, t2, t3 any integer register
£2, f4, £6 even-numberedfloating point register
fo, f£1, £3 any floating point register
4 [*]

-

" Basic Instructions | Extended (pseudo) Instructions | Directives I Syscalls I Exceptions T'Maclos

ladd tl,t2,c3 Addition: set tl to (tZ plus t3) [~
addi tl,tZ,-100 Addition immediate: set tl to (t2 plus signed 1Z2-bit immediate)
and tl,tz,c3 Bitwise AND : Set tl to bitwise AND of tZ and t3 S
andi tl,tZ,-100 Bitwise AND immediate : Set tl to bitwise AND of tZ and si¢gn-extended 12-bit immedid |
auipc tl,l00000 Add upper immediate to pc: set tl to (pc plus an upper Z0-bit immediate)

eq tl,tZ,label Branch if equal : Branch to statement at label's address if tl and tZ are equal
ge tl,tZ,label Branch if greater than or equal: Branch to statement at label's address if tl is gre
geu tl,tZ,label Branch if greater than or equal to (unsi¢gned): Branch to statement at label's addreg
lt tl,tZ,label Branch if less than: Branch to statement at label's address if tl is less than tZ
ltu tl,t2,label Branch if less than (unsigned): Branch to statement at label's address if tl is less
ne tl,t2,label Branch if not ecual : Branch to statement at label's address if tl and tZ are not edg
csrrce t0, fesr, tl Atomic Read/Clear CSR: read from the CSR into tD and clear bits of the CSR according
csrrci t0, fesr, 10 Atomic Read/Clear CSR Immediate: read from the CSR into tD and clear bits of the C5H
csrrs t0, fcsr, tl Atomic Read/Set CSR: read from the CSRE into t0 and logical or tl into the CSRE
csrrsi tl, fesr, 10 Atomic Pead/Set CSR Immediate: read from the CSR into t0 and logical or a constant i
csrrw t0, fesr, tl Atomic Read/Write CSR: read from the CSR into tD and write tl into the CSR
csrrwi t0, fesr, 10 Atomic Pead/Write CSP Immediate: read from the CSR into tD and write a constant intd
div tl,t2,t3 Division: set tl to the result of t2/t3

- - - -

Assignment 1: Assign 12-bit integer numbers / small integer

Support: Asa RISC architecture, RV32l instruction set does not have an instruction to
assign values directly to registers, but can use the addition instruction to assign. For
example, to assign the value 0x123 to register sO, use the addition instruction

addi s0, zero, 0x123

On the other hand, instruction addi format is | type. | format save 12-bits to store 12-
bit signed integer (imm[11:0]). As a result, addi just assign a small integer in the range
of 12-bits (from -2048 to 2047).

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 1
.text
addi s@, zero, 0x512 # sO = @ + Ox512; I-type: just store a constant
with 12-bit length
add s@, x0, zero # s =0 + 0 ; R-type:

Requirements:

- Use debug tool. Run step by step.
- Monitor the Registers window:

o Register s0.

o Register PC.

Hanoi University of Science and Technology
School of Information and Communications Technology

- Learn more about instructions 1b, sb.
- In Text Segment, determine the instruction formats of the machine codes.
- Modified the instruction addi as bellow. Explain the result.

addi s@, zero, 0x20232024

Assignment 2: Assign 32-bit integer

Support: To assign a 32-bit number to a 32-bit register, you let instruction load upper
immediate (1ui), and instruction addi more. 1ui format is U-type which contains a
literal number of 20-bit. It loads a 20-bit constant into the 20 most significant bits of the
destination register. Combined with addi, addi loads a 12-bit constant into the 12 most
significant bits of the destination register. So you have full 32 bits.

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 2
Load 0x20232024 to s@ register
.text

lui s@, 0x20232 # sO
addi s@, sO, 0x024 # s0

OxABCDE©O0O
s + 0x123

Requirements:

- Use debug tool. Run step by step.
- Monitor the Registers window:
o Register s0.
o Register PC.
- In Text Segment, determine the instruction formats of the machine codes.
- Modified the instruction addi as bellow. Explain the result.
- In Data Segment, click to Combo Box, select .text to show values of memory

| & |[ox00400000 (text) |~ | 1 Hexadec

inside instruction area (.text).
o Compare data in Data Segment with machine codes in Text Segment.

Note:
- In RISC-V, the constant (immediate value) is always 2’s complemented, should
be extend to 32-bit 2's complement numbers, to fit the length of register.

Laboratory Exercise 2, Assignment 2
IN HIGH LEVEL LANGUAGE

int a = OXFEEDB987;

IN ASSEMBLY LANGUAGE

.text
lui s@, OxFEEDC # s@ = OxXFEEDCO00
addi s@, sO@, OxFFFFF987 # sO© = OxFEEDB987

Hanoi University of Science and Technology
School of Information and Communications Technology

Assignment 3: new assignment instructions

Support: As a Reduced Instruction Set Computer architecture, RISC-V was optimized
to be simpler with fewer instructions. Consequently, developers must write code longer.
To compensate, the compilers support some Extended/Pseudo Instructions, which are
not part of the RISC-V instruction set but easier for developers to program. Whenever
compiled to machine code, each pseudo instruction could be 1 or more real instructions.

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 3
.text

1i s, ©0x20232024

1li so, 0ox20

Requirements:

- Compile, observe and compare the commands in the Source column and the Basic
column in the Text Segment window. Explain the results.

Assignment 4: Calculate the expression 2x +y =?
Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 4

.text
Assign X,Y into t1,t2 register
addi t1, zero, 5 #X=t1="7

addi t2, zero, -1 #Y = t2 ?

Expression Z = 2X + Y
add so, ti1, t1 # sO
add so, so, t2 # so

t1 + t1
s + t2

X + X = 2X
2X + Y

Requirements:

- Use debug tool. Run step by step.
- Monitor the Registers window:
o Register t1, t2, sO0,
o Value of s0 is correct?
- In Text Segment window, obtain machine codes of addi (I-type) and add(R-
type) instructions.
- Try to compile addi (I-type) and add(R-type) to machine code manually, and
compare.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

[funct? T rs2 sl | funct3 | rd | opcode | R-type

‘ imm|11:0] rsl | funct3 I rd | opcode | I-type

Hanoi University of Science and Technology
School of Information and Communications Technology

Assignment 5: Multiplication

Support: Multiplication is quite different from other mathematical instructions, because
when multiplying two 32-bit numbers, the result is a 64-bit number. The RISC-V
architecture provides different instructions for performing multiplication, which can
write the result as 32-bit or 64-bit, depending on the instruction. These instructions are
not part of the RV32I basic architecture, but are part of the RV32M extension (RISC-V
multiply/divided extension).

The first multiplication type:

mul rd, rsl, rs2 # rd = 32 least signification bits of rsl * rs2

The second multiplication type:

mul rd, rsl, rs2
mulh rd, rsl, rs2
mulsu rd, rsl, rs2
mulhu rd, rsl, rs2

rd = 32 least signification bits of rsl * rs2
rd = 32 msb of rsl * rs2 (both rsl, rs2 are signed)

rd = 32 msb of rsl * rs2 (1 signed , 1 unsigned)

H* = H

rd = 32 msb of rsl * rs2 (both rsl, rs2 are unsigned)

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 5

.text
Assign X, Y into tl1l, t2 register
addi t1, zero, 4 # X = tl1 =?
addi t2, zero, 5 #Y =1t2 =?

Expression Z = X * Y
mul s1, t1, t2 # sl just stores the low 32 bits of the result

Requirements:

- Use debug tool. Run step by step.

- Monitor the Registers window:

- Verify results of multiplication instructions.
- Try division instructions

Assignment 6: Declare and access variables

Support: Compiler directives are not machine codes, but supply more information for
the compiler to compile assembly code more accurately.

From the perspective of CPU, both instructions and data are binary numbers. cannot.

Hanoi University of Science and Technology
School of Information and Communications Technology

CPU cannot distinguish between instructions and data. In main memory, is a
hexadecimal number 0xF0028293 an instruction or a variable? Let us verify.
- Play arole of CPU, a hardware:
o If the Program Counter register, PC, is pointing to that number, that number
should be an instruction which is addi x5, x5, -256.
o If PC isn’t point to that number, the number should be a variable. You can
modify values, read/write it.
- Play arole of a compiler, a software:
o If that number is declared after the directive .data, it is a variable.
o If that number is declared after the directive .text, it is an instruction and
should be disassembled to addi x5, x5, -256

The directive .data and .text works as bookmarks, locate the start address of a certain
memory area in RAM, where the compiler will set the first variable or the first
instruction. This starting point is purely a convention for controlling resources, so each
CPU, each operating system, or compiler can set different starting points.

The example below shows 2 directives .data and .text for allocating and initializing
global variables, defining constants, variables loaded into the data segment, and the code
loaded into the text segment. (Understand how the program works).

Copy the following program into the RARS emulator:

Laboratory Exercise 2, Assignment 6

.data # Declare variables
X: .word 5 # Variable X, word type (4 bytes), initial value = 5
Y: .word -1 # Variable Y, word type (4 bytes), initial value = -1
Z: .word © # Variable Z, word type (4 bytes), initial value = ©
.text # Declare instructions

Fetch values of variables X and Y to registers

la t5, X # Get the literal address of X in Data Segment
la t6, Y # Get the literal address of Y

lw t1, o(t5) # t1 = X

lw t2, o(te) # t2 =Y

Calculate Z = 2X + Y via registers respectively
add so, ti1, t1
add s@, se, t2

Store values from registers to main memory (RAM)
la t4, z # Get Z’s address

sw sO@, 0(t4) # Store Z’s value to main memory

Requirements:

Hanoi University of Science and Technology
School of Information and Communications Technology

In Labels window, see the addresses of X, Y, Z in main memory.

o Double click to labels X, Y, Z in the Labels windows to highlight their
locations in Data Segment. Read values and compare with initial values in
the assembly program.

Compile and monitor instructions in the Text Segment window.

o How is Instruction la, load address, compiled (code column, basic
column, address column). Explain the way 1a works. (keep an eye on the
register pc, address of label X, Y).

Use debug tool. Run step by step.
Monitor the Registers window:

o Values of registers

o lw and sw.

Learn more about instructions 1b, sb.
Remember the processing rules:

o Load as much as posible variables from main memory into registers by

instructions 1a, 1w.

o Calculate with registers.
o Store values from register back to main memory by instructions 1a,
SwW.

Assignment 7: Declare variables or instructions at specified addresses

Support: you could declare directives .data, .text with syntax below

.data literal address
.text literal address

The literal address is the start address of the memory area. The compiler will allocate
variables or instructions from this address onwards.

Consequences:

Value of variables could be changed, but its address is fixed (Ignore
virtualization techniques or operating system).
The address of an instruction is fixed.

If you can find out the address of a variable of a target software, you can
develop another software to illegally access that variable and change its value.
That is hacking.

If you can find the address of a instruction of a target software, you can
develop another software to replace that instruction by a jump instruction to
make CPU move to your codes. That is a computer virus.

Request the compiler to allocate variable at the address of 0x10011234
.data 0x10011234
x: .word

Hanoi University of Science and Technology
School of Information and Communications Technology

Conclusion

