
Hanoi University of Science and Technology
School of Information and Communications Technology

1

Lab 1. Introduction to RARS

Goals

After this lab session, you will be able to use the RARS tool, write a simple assembly
program, simulate the execution of the program, and debug errors (if any). You will also
have a general understanding of the operation of a RISC-V processor when it executes
instructions.

References

- RISC-V documents, lecture notes.
- The RISC-V Instruction Set Manual: riscv-spec-20191213.pdf

About RARS
- Website: https://github.com/TheThirdOne/rars
- RARS version 1.6:

https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar

Kick-off

Download and run
1. Download Java Runtime Environment, JRE, to run the RARS tool.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
2. Install JRE
3. Download the RARS tool at the following URL:

https://github.com/TheThirdOne/rars
The RARS tool can be used immediately without installation. Double-click the file
rars1_6.jar to run it.

Basics of the IDE programming interface

https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/download/v1.6/rars1_6.jar
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/TheThirdOne/rars

Hanoi University of Science and Technology
School of Information and Communications Technology

2

Figure 1. IDE of RARS Tool

1. Menu: Most of the items in the menu have corresponding icons.
o Move the mouse over the icon → A tooltip explaining the corresponding

function will appear.

Figure 2. A tooltip explains a function in the menu.

o The items in the menu also have corresponding shortcuts.
2. Toolbar:

o Basic editing features such as copy, paste, open ...
o Debugging features (in the red rectangle):

▪ Run: Run the entire program.
▪ Run one step at a time: Execute one instruction at a time and then

pause.
▪ Undo the last step: Restore the state to the previous instruction.
▪ Pause: Temporarily pause the running process.
▪ Stop: End the debugging process.
▪ Reset memory and register: Restart memory and registers.

3. Edit tab: The RARS tool has a built-in text editor with syntax highlighting,
making it easier for users to follow the source code. Additionally, when a
command is entered but not yet completed, a popup will appear to assist. Go to
the Settings / Editor in the menu to change settings related to the editing function.

Figure 3. A popup appears to explain the instructions.

Hanoi University of Science and Technology
School of Information and Communications Technology

3

4. Edit/Execute:
Each source code file in the editing interface has two windows (2 tabs): Edit and
Execute.

o Edit tab: Write assembly programs with syntax highlighting.
o Execute tab: Compile the assembly program written in the Edit tab

into machine code, run it, and debug.
5. Message Areas: There are two windows at the bottom of the IDE interface.

o Run I/O is only active when running the program.
▪ It displays results output to the console.
▪ It inputs data into the program via the console.

The RARS tool has an option for all console input data to be displayed
again in the message area.

o Messages is used to display all other notifications, such as error
messages during compilation or while running the program. Click on
an error message to automatically jump to the line causing the error.

6. Registers: The table displays the values of the processor's registers, always
visible regardless of whether the assembly program is running or not. This
table also helps you remember the names and IDs of the registers when writing
programs. There are three tabs in this table:

o General-Purpose Registers are numbered from 0 to 31, including the
Program Counter register and can be used in any of the instructions.

o Floating Point Registers are used for performing floating-point
arithmetic instructions.

o Control and Status Registers are used for interrupt handling.

Program and understand the tool with the HelloWorld program

1. Click on the file rars1_6.jar to start the program.

2. In the menu bar, select File / New to create a new assembly file.

3. The editing window will appear. Start programming.

4. Enter the following code in the editing window.

.data # Data Segment, declare variables here

Hanoi University of Science and Technology
School of Information and Communications Technology

4

 x: .word 0x01020304 # Declare variable X with initial value

 msg: .asciz "School of Information and Communications Technology"

.text # Text Segment, instructions, program by asm language

 la a0, msg # Get the address of the variable msg, store into a0

 li a7, 4 # Set register a7 = 4

 ecall # Invoke system procedure to print string msg

 addi t1, zero, 2 # Register t1 = 2

 addi t2, zero, 3 # Register t2 = 3

 add t0, t1, t2 # Register t0 = t1 + t2

5. To compile the assembly program into machine code, do one of the following:

- Go to Run / Assemble in the menu.

- Click the icon in the menu bar.
- Press the F3 shortcut key.

6. If the assembly code is correct, the RARS tool will switch from the Edit tab to the
Execute tab.

Note: If the assembly code has an error, the Messages window will display the details
of the error. Click on the error message line, and the editor will automatically jump to
the line of the error in the code, allowing you to correct it.

7. In the Execute tab, there are two main windows: Text Segment and Data

Segment.

Hanoi University of Science and Technology
School of Information and Communications Technology

5

• Text Segment is the memory space that contains the assembly code. In

the assembly source code, any code written after the .text directive
belongs to the Text Segment.

• Data Segment is the memory space that contains variables. In the
assembly source code, any code written after the .data directive belongs
to the Data Segment.

Note: For some reason, if you declare a variable after the .text directive or vice versa,
the compiler will either report an error or ignore the incorrect declaration.

8. In the Execute tab, use the checkboxes below to change the data display format for

easier observation.

• : Displays the address in the hexadecimal format.

• : Displays the register value in the hexadecimal
format.

• : Displays the value in memory as ASCII characters.

Hanoi University of Science and Technology
School of Information and Communications Technology

6

9. In the Execute tab, within the Text Segment window, the table has five columns:

• Bkpt: Breakpoints, the stopping points when running the entire program

using the button.

• Address: The address of the instruction in the integer format (see more
instructions in the Label window).

• Code: The instruction in the machine code format.

• Basic: The instruction in assembly language, as specified in the instruction
set. Here, all labels, mnemonics, etc., have been converted into constants.

• Source: The instruction in assembly language with additional macros,
labels, etc., to help write a program faster and more understandable. For
example:

i. The la instruction in the Source column is a pseudo-instruction, not
part of the instruction set, and is translated into two corresponding
instructions, auipc and addi in the Basic column.

ii. The msg label in the la a0, msg instruction in the Source column
is replaced by parameters for the auipc and addi instructions.

10. In the Execute tab, within the Data Segment window, the table has nine columns:

• Address: The address of the data or variable in the integer format. The

value of each row increases by 32 in decimal or 0x20 in hexadecimal
because each row presents 32 bytes at consecutive addresses.

• Value columns: Each column contains 4 bytes, and there are 8 columns,
corresponding to 32 consecutive bytes.

Hanoi University of Science and Technology
School of Information and Communications Technology

7

In the image above, the value of the variable x = 0x01020304 is displayed correctly

in the Data Segment with the number format , and the value of the string
“Truong Cong nghe thong tin va Truyen thong” is displayed correctly with the

ASCII format . Note that storing strings in memory in the little-endian
format is due to the way the software syscall function is programmed, not a
requirement of the MIPS processor. As can be seen, the RARS tool stores strings in
the big-endian format.

Click the pair of buttons to move to the
neighboring address region.

Click on the ComboBox to navigate to the memory
region containing the specified data type:

o .data: Data region
o .text: Instruction region
o sp: Stack region

11. The Label window displays the label names and the corresponding address constants

when compiled into machine code. The Label window does not display
automatically. In the menu, go to the Settings / Show Labels Window to toggle the
display of the Label window.

Hanoi University of Science and Technology
School of Information and Communications Technology

8

In the following image, important information can be seen:
- In the Label window:

o x is just a mnemonic, and it will be converted into 0x10010000
(constant).

o msg is also just a mnemonic, and it will be converted into 0x10010004
(constant).

o Double-clicking on a variable name will automatically jump to the
corresponding position in the Data Segment window.

- In the Text Segment window:
o In the la a0, msg assignment instruction, the mnemonic msg has been

converted into 0x10010004 through the auipc and addi instruction
pair.

- In the Data Segment window:
o To monitor the value of the variable x, open the Data Segment at

0x10010000 to see the value of x.
o To monitor the value of the variable msg, open the Data Segment at

0x10010004 to see the value of msg.

Running the Emulator
1. Continue running the Hello World program mentioned above.

2. Use the slider bar to adjust the execution speed of the instructions.

By default, the execution speed is set to maximum, and at this speed, it’s difficult
to intervene much in the operation of the instructions and control them. However,
you can move the slider bar to around one or two instructions/second for easier
observation.

3. In the Execute tab, choose a way to run the program:

Hanoi University of Science and Technology
School of Information and Communications Technology

9

• Click the Run icon to execute the entire program. When using Run, you can
observe the line highlighted in yellow, indicating where the assembly program is
being processed. Simultaneously, you can observe the data changes in the Data
Segment window and the Registers window.

• Click the Reset icon to restart the emulator to its initial state. All memory
blocks and registers are reset to 0.

• Click the Run one step icon to execute just one instruction and then wait to
click on the icon again to execute the next instruction.

• Click Run one step backwards icon to restore the state and go back to the
previously executed instruction.

• After running all the instructions of the Hello World program, you will see the
Run I/O window display the string “Truong Cong nghe thong tin va Truyen
thong”.

Emulation & Debugging: Observe Changes in Variables
During emulation, execute one instruction at a time with the Run one step function. At
each instruction, observe the value changes in the Data Segment and Registers
windows, and understand the meaning of those changes.

Emulation & Debugging: Change Variable Values at Runtime

During emulation, you can change the value of any memory block by:
1. Double-clicking the corresponding slot in the Data Segment, and then

2. Entering the new value, and finally,

3. Continuing running the program.

Emulation & Debugging: Change Register Values at Runtime

The method is similar to changing variable values but applied to the Registers window.

Hanoi University of Science and Technology
School of Information and Communications Technology

10

Consulting Help

Click the button to view explanations of RISC-V instructions, pseudo-instructions,
directives, and system service functions.

Memory Address Constants
In the menu, Choose Settings / Memory Configuration…
The Memory Configuration window contains a table defining the memory address
constants used by the RARS tool. According to this table, machine code always starts at
address 0x00400000, and data always starts at address 0x10000000.

Hanoi University of Science and Technology
School of Information and Communications Technology

11

Lab 1 (extended). Introduction to Other Tools

RISC-V is a well-known architecture used by many CPU/MCU lines, including:

- ESP32 C3 and C6 series by Espressif (See details)
- CH32 by WCH (See details)
- Allwinner D1 with MangoPi board (See details)

There are many other simulation and emulation tools, such as:

1. Ripes, used to simulate code written in C or assembly language on a RISC-V
processor with the RV32I[M][C] instruction set. Available on both Web and
PC. (See details)

2. Visual Studio Code, combined with
the PlatformIO extension, used for
programming in C and assembly on
real RISC-V processors, such as the
ESP32-C3. This tool supports direct
debugging on RISC-V processors. No
simulation. Available on PC.

3. ArduinoIDE, used for programming in
C and assembly on real RISC-V processors,
such as the ESP32-C3. This tool does not
support direct debugging on RISC-V
processors. No simulation. Available on PC.

4. Wowki, a visual tool for designing
circuit boards with many sensors and
actuators. It is helpful for simulating
IoT designs. Available on Web. (See
details)

https://www.espressif.com/en/products/socs/esp32-c3
https://special.wch.cn/zh_cn/RISCV_MCU_Index/
https://www.cnx-software.com/2020/11/09/xuantie-c906-based-allwinner-risc-v-processor-to-power-12-linux-sbcs/
https://neittien0110.github.io/RISC-VFundamentalMaterials/RIPES.vi.html#s%C6%A1-l%C6%B0%E1%BB%A3c-v%E1%BB%81-ripes
https://wokwi.com/
https://wokwi.com/

	Lab 1. Introduction to RARS
	Goals
	References
	About RARS
	Kick-off
	Download and run
	Basics of the IDE programming interface
	Program and understand the tool with the HelloWorld program
	Running the Emulator
	Emulation & Debugging: Observe Changes in Variables
	Emulation & Debugging: Change Variable Values at Runtime
	Emulation & Debugging: Change Register Values at Runtime
	Consulting Help
	Memory Address Constants

	Lab 1 (extended). Introduction to Other Tools

